Numerical Analysis and Artificial Neural Networks for Solving Nonlinear Tuberculosis Model in SEITR Framework

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
N. Jeeva, K. M. Dharmalingam
{"title":"Numerical Analysis and Artificial Neural Networks for Solving Nonlinear Tuberculosis Model in SEITR Framework","authors":"N. Jeeva, K. M. Dharmalingam","doi":"10.1002/adts.202401287","DOIUrl":null,"url":null,"abstract":"This study investigates an epidemiological model of tuberculosis dynamics by classifying the total population into five distinct compartments: susceptible, exposed, infected, treated, and recovered. To solve the system of nonlinear differential equations and obtain approximate solutions for the <span data-altimg=\"/cms/asset/b2e4348d-103a-4955-b89b-15f6540438a1/adts202401287-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"1\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202401287-math-0001.png\"><mjx-semantics><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,1,2,3,4\" data-semantic-content=\"5,6,7,8\" data-semantic- data-semantic-role=\"implicit\" data-semantic-speech=\"upper S upper E upper I upper T upper R\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202401287:adts202401287-math-0001\" display=\"inline\" location=\"graphic/adts202401287-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,1,2,3,4\" data-semantic-content=\"5,6,7,8\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper S upper E upper I upper T upper R\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">S</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">E</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">I</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">T</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">R</mi></mrow>$SEITR$</annotation></semantics></math></mjx-assistive-mml></mjx-container> tuberculosis model, three analytical methods are utilized: the transcendental-exponential type proposed method (PNM), the Homotopy perturbation method (HPM), and the higher-order inverse polynomial method (HOIPM). Additionally, the study examines the stochastic performance of artificial neural networks trained using the Levenberg–Marquardt algorithm (ANNs-LMB) to offer a comprehensive evaluation of the tuberculosis model. The predictions generated by ANNs-LMB provide valuable benefits for researchers, significantly improving their understanding of infectious tuberculosis dynamics. Furthermore, error estimations demonstrate that the PNM, HOIPM, and ANNs-LMB methods are highly effective in generating accurate solutions, closely matching those obtained from the Runge–Kutta solver, and surpassing the performance of HPM. These methods exhibit strong reliability and efficiency, making them innovative tools for addressing tuberculosis models and simulating epidemiological challenges. Moreover, the analysis of key parameters, including contact rate, infection rate, tuberculosis-related mortality rate, reinfection rate, and treatment rate, provides crucial insights into the model's behavior and dynamics, paving the way for future research and effective intervention strategies.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"35 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202401287","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates an epidemiological model of tuberculosis dynamics by classifying the total population into five distinct compartments: susceptible, exposed, infected, treated, and recovered. To solve the system of nonlinear differential equations and obtain approximate solutions for the SEITR$SEITR$ tuberculosis model, three analytical methods are utilized: the transcendental-exponential type proposed method (PNM), the Homotopy perturbation method (HPM), and the higher-order inverse polynomial method (HOIPM). Additionally, the study examines the stochastic performance of artificial neural networks trained using the Levenberg–Marquardt algorithm (ANNs-LMB) to offer a comprehensive evaluation of the tuberculosis model. The predictions generated by ANNs-LMB provide valuable benefits for researchers, significantly improving their understanding of infectious tuberculosis dynamics. Furthermore, error estimations demonstrate that the PNM, HOIPM, and ANNs-LMB methods are highly effective in generating accurate solutions, closely matching those obtained from the Runge–Kutta solver, and surpassing the performance of HPM. These methods exhibit strong reliability and efficiency, making them innovative tools for addressing tuberculosis models and simulating epidemiological challenges. Moreover, the analysis of key parameters, including contact rate, infection rate, tuberculosis-related mortality rate, reinfection rate, and treatment rate, provides crucial insights into the model's behavior and dynamics, paving the way for future research and effective intervention strategies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信