Detectable signals of post-Born lensing curl B-modes

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Mathew Robertson, Giulio Fabbian, Julien Carron, Antony Lewis
{"title":"Detectable signals of post-Born lensing curl B-modes","authors":"Mathew Robertson, Giulio Fabbian, Julien Carron, Antony Lewis","doi":"10.1088/1475-7516/2025/02/034","DOIUrl":null,"url":null,"abstract":"Curl lensing, also known as lensing field-rotation or shear B-modes, is a distinct post-Born observable caused by two lensing deflections at different redshifts (lens-lens coupling). For the Cosmic Microwave Background (CMB), the field-rotation is approximately four orders of magnitude smaller than the CMB lensing convergence. Direct detection is therefore challenging for near-future CMB experiments such as the Simons Observatory (SO) or CMB `Stage-4' (CMB-S4). Instead, the curl can be probed in cross-correlation between a direct reconstruction and a template formed using pairs of large-scale structure (LSS) tracers to emulate the lens-lens coupling. In this paper, we derive a new estimator for the optimal curl template specifically adapted for curved-sky applications, and test it against non-Gaussian complications using N-body cosmology simulations. We find non-foreground biases to the curl cross-spectrum are purely Gaussian at the sensitivity of SO. However, higher-order curl contractions induce non-Gaussian bias at the order of 1<italic toggle=\"yes\">σ</italic> for CMB-S4 using quadratic estimators (QE). Maximum a-Posteriori (MAP) lensing estimators significantly reduce biases for both SO and CMB-S4, in agreement with our analytic predictions. We also show that extragalactic foregrounds in the CMB can bias curl measurements at order of the signal, and evaluate a variety of mitigation strategies to control these biases for SO-like experiments. Near-future observations will be able to measure post-Born lensing curl B-modes.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"44 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/02/034","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Curl lensing, also known as lensing field-rotation or shear B-modes, is a distinct post-Born observable caused by two lensing deflections at different redshifts (lens-lens coupling). For the Cosmic Microwave Background (CMB), the field-rotation is approximately four orders of magnitude smaller than the CMB lensing convergence. Direct detection is therefore challenging for near-future CMB experiments such as the Simons Observatory (SO) or CMB `Stage-4' (CMB-S4). Instead, the curl can be probed in cross-correlation between a direct reconstruction and a template formed using pairs of large-scale structure (LSS) tracers to emulate the lens-lens coupling. In this paper, we derive a new estimator for the optimal curl template specifically adapted for curved-sky applications, and test it against non-Gaussian complications using N-body cosmology simulations. We find non-foreground biases to the curl cross-spectrum are purely Gaussian at the sensitivity of SO. However, higher-order curl contractions induce non-Gaussian bias at the order of 1σ for CMB-S4 using quadratic estimators (QE). Maximum a-Posteriori (MAP) lensing estimators significantly reduce biases for both SO and CMB-S4, in agreement with our analytic predictions. We also show that extragalactic foregrounds in the CMB can bias curl measurements at order of the signal, and evaluate a variety of mitigation strategies to control these biases for SO-like experiments. Near-future observations will be able to measure post-Born lensing curl B-modes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信