Persistent Haldane phase in carbon tetris chains

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
Anas Abdelwahab, Christoph Karrasch, Roman Rausch
{"title":"Persistent Haldane phase in carbon tetris chains","authors":"Anas Abdelwahab, Christoph Karrasch, Roman Rausch","doi":"10.1103/physrevb.111.075129","DOIUrl":null,"url":null,"abstract":"We introduce the concept of “tetris chains,” which are linear arrays of four-site molecules that differ by their intermolecular hopping geometry. We investigate the fermionic symmetry-protected topological Haldane phase in these systems using Hubbard-type models. The topological phase diagrams can be understood via different competing limits and mechanisms: strong coupling U</a:mi>≫</a:mo>t</a:mi></a:mrow></a:math>, weak coupling <b:math xmlns:b=\"http://www.w3.org/1998/Math/MathML\"><b:mrow><b:mi>U</b:mi><b:mo>≪</b:mo><b:mi>t</b:mi></b:mrow></b:math>, and the weak intermolecular hopping limit <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\"><c:mrow><c:msup><c:mi>t</c:mi><c:mo>′</c:mo></c:msup><c:mo>≪</c:mo><c:mi>t</c:mi></c:mrow></c:math>. Our particular focus is on two tetris chains that are of experimental relevance. First, we show that a “Y-chain” of coarse-grained nanographene molecules (triangulenes) is robustly in the Haldane phase in the whole <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\"><d:mrow><d:msup><d:mi>t</d:mi><d:mo>′</d:mo></d:msup><d:mtext>−</d:mtext><d:mi>U</d:mi></d:mrow></d:math> plane due to the cooperative nature of the three limits. Secondly, we study a near-homogeneous “<e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\"><e:msup><e:mrow><e:mi mathvariant=\"normal\">Y</e:mi></e:mrow><e:mo>′</e:mo></e:msup></e:math>-chain” that is closely related to the electronic model for poly(p-phenylene vinylene). In the latter case, the above mechanisms compete, but the Haldane phase manifests robustly and is stable when long-ranged Pariser-Parr-Popple interactions are added. The site-edged Hubbard ladder can also be viewed as a tetris chain, which gives a very general perspective on the emergence of its fermionic Haldane phase. Our numerical results are obtained by large-scale, SU(2)-symmetric tensor network calculations. We employ the density-matrix-renormalization group as well as the variational uniform matrix-product state (VUMPS) algorithms for finite and infinite systems, respectively. The numerics are supplemented by analytical calculations of the band-structure winding number. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"189 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.075129","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the concept of “tetris chains,” which are linear arrays of four-site molecules that differ by their intermolecular hopping geometry. We investigate the fermionic symmetry-protected topological Haldane phase in these systems using Hubbard-type models. The topological phase diagrams can be understood via different competing limits and mechanisms: strong coupling U≫t, weak coupling Ut, and the weak intermolecular hopping limit tt. Our particular focus is on two tetris chains that are of experimental relevance. First, we show that a “Y-chain” of coarse-grained nanographene molecules (triangulenes) is robustly in the Haldane phase in the whole tU plane due to the cooperative nature of the three limits. Secondly, we study a near-homogeneous “Y-chain” that is closely related to the electronic model for poly(p-phenylene vinylene). In the latter case, the above mechanisms compete, but the Haldane phase manifests robustly and is stable when long-ranged Pariser-Parr-Popple interactions are added. The site-edged Hubbard ladder can also be viewed as a tetris chain, which gives a very general perspective on the emergence of its fermionic Haldane phase. Our numerical results are obtained by large-scale, SU(2)-symmetric tensor network calculations. We employ the density-matrix-renormalization group as well as the variational uniform matrix-product state (VUMPS) algorithms for finite and infinite systems, respectively. The numerics are supplemented by analytical calculations of the band-structure winding number. Published by the American Physical Society 2025
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信