{"title":"Molecular insights and rational engineering of a compact CRISPR-Cas effector Cas12h1 with a broad-spectrum PAM","authors":"Weiwei Zheng, Hongyu Li, Mengxi Liu, Yuhang Wei, Bo Liu, Zekai Li, Chenyang Xiong, Shiqing Huang, Chunyi Hu, Songying Ouyang","doi":"10.1038/s41392-025-02147-5","DOIUrl":null,"url":null,"abstract":"<p>Cas12h1 is a compact CRISPR-associated nuclease from functionally diverse type V CRISPR-Cas effectors and recognizes a purine-rich protospacer adjacent motif (PAM) distinct from that of other type V Cas effectors. Here, we report the nickase preference of Cas12h1, which predominantly cleaves the nontarget strand (NTS) of a double-stranded DNA (dsDNA) substrate. In addition, Cas12h1 acts as a nickase in human cells. We further determined the cryo-EM structures of Cas12h1 in the surveillance, R-loop formation, and interference states, revealing the molecular mechanisms involved in the crRNA maturation, target recognition, R-loop formation, nuclease activation and target degradation. Cas12h1 notably recognizes a broad 5’-DHR-3’ PAM (D is A, G, or T; H is A, C, or T; R is A or G) both in vitro and in human cells. In addition, Cas12h1 utilizes a distinct activation mechanism that the lid motif undergoes a “flexible to stable” transition to expose the catalytic site to the substrate. A high-fidelity nucleic acid detector, Cas12h1<sup>hf</sup>, was developed through rational engineering, which distinguishes single-base mismatches and retains comparable on-target activities. Our results shed light on the molecular mechanisms underlying Cas12h1 nickase, improve the understanding of type V Cas effectors, and expand the CRISPR toolbox for genome editing and molecular diagnosis.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"10 1","pages":""},"PeriodicalIF":40.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Transduction and Targeted Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41392-025-02147-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cas12h1 is a compact CRISPR-associated nuclease from functionally diverse type V CRISPR-Cas effectors and recognizes a purine-rich protospacer adjacent motif (PAM) distinct from that of other type V Cas effectors. Here, we report the nickase preference of Cas12h1, which predominantly cleaves the nontarget strand (NTS) of a double-stranded DNA (dsDNA) substrate. In addition, Cas12h1 acts as a nickase in human cells. We further determined the cryo-EM structures of Cas12h1 in the surveillance, R-loop formation, and interference states, revealing the molecular mechanisms involved in the crRNA maturation, target recognition, R-loop formation, nuclease activation and target degradation. Cas12h1 notably recognizes a broad 5’-DHR-3’ PAM (D is A, G, or T; H is A, C, or T; R is A or G) both in vitro and in human cells. In addition, Cas12h1 utilizes a distinct activation mechanism that the lid motif undergoes a “flexible to stable” transition to expose the catalytic site to the substrate. A high-fidelity nucleic acid detector, Cas12h1hf, was developed through rational engineering, which distinguishes single-base mismatches and retains comparable on-target activities. Our results shed light on the molecular mechanisms underlying Cas12h1 nickase, improve the understanding of type V Cas effectors, and expand the CRISPR toolbox for genome editing and molecular diagnosis.
期刊介绍:
Signal Transduction and Targeted Therapy is an open access journal that focuses on timely publication of cutting-edge discoveries and advancements in basic science and clinical research related to signal transduction and targeted therapy.
Scope: The journal covers research on major human diseases, including, but not limited to:
Cancer,Cardiovascular diseases,Autoimmune diseases,Nervous system diseases.