{"title":"A Hybrid LSTM-Transformer Model for Power Load Forecasting","authors":"Vasileios Pentsos;Spyros Tragoudas;Jason Wibbenmeyer;Nasser Khdeer","doi":"10.1109/TSG.2025.3535407","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel optimized hybrid model combining Long Short-Term Memory (LSTM) and Transformer deep learning architectures designed for power load forecasting. It leverages the strengths of both LSTM and Transformer models, ensuring more accurate and reliable forecasts of power consumption while considering geographic factors, user behavioral factors, and time constraints for the training time. The model is modified to forecast the total power load for consecutive future time instances rather than the next time instance. We have tested the models using residential power consumption data, and the findings reveal that the optimized hybrid model consistently outperforms existing methods.","PeriodicalId":13331,"journal":{"name":"IEEE Transactions on Smart Grid","volume":"16 3","pages":"2624-2634"},"PeriodicalIF":8.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Smart Grid","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10887006/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a novel optimized hybrid model combining Long Short-Term Memory (LSTM) and Transformer deep learning architectures designed for power load forecasting. It leverages the strengths of both LSTM and Transformer models, ensuring more accurate and reliable forecasts of power consumption while considering geographic factors, user behavioral factors, and time constraints for the training time. The model is modified to forecast the total power load for consecutive future time instances rather than the next time instance. We have tested the models using residential power consumption data, and the findings reveal that the optimized hybrid model consistently outperforms existing methods.
期刊介绍:
The IEEE Transactions on Smart Grid is a multidisciplinary journal that focuses on research and development in the field of smart grid technology. It covers various aspects of the smart grid, including energy networks, prosumers (consumers who also produce energy), electric transportation, distributed energy resources, and communications. The journal also addresses the integration of microgrids and active distribution networks with transmission systems. It publishes original research on smart grid theories and principles, including technologies and systems for demand response, Advance Metering Infrastructure, cyber-physical systems, multi-energy systems, transactive energy, data analytics, and electric vehicle integration. Additionally, the journal considers surveys of existing work on the smart grid that propose new perspectives on the history and future of intelligent and active grids.