Establishment of reverse genetics systems for Colorado tick fever virus.

IF 5.5 1区 医学 Q1 MICROBIOLOGY
PLoS Pathogens Pub Date : 2025-02-14 eCollection Date: 2025-02-01 DOI:10.1371/journal.ppat.1012921
Shohei Minami, Ryotaro Nouda, Katsuhisa Hirai, Zelin Chen, Tomohiro Kotaki, Yuta Kanai, Takeshi Kobayashi
{"title":"Establishment of reverse genetics systems for Colorado tick fever virus.","authors":"Shohei Minami, Ryotaro Nouda, Katsuhisa Hirai, Zelin Chen, Tomohiro Kotaki, Yuta Kanai, Takeshi Kobayashi","doi":"10.1371/journal.ppat.1012921","DOIUrl":null,"url":null,"abstract":"<p><p>The Colorado tick fever virus (CTFV), which has 12-segmented double-stranded RNA genomes, is a pathogenic arbovirus that causes severe diseases in humans. However, little progress has been made in the analysis of replication mechanisms and pathogenicity. This virological constraint is due to the absence of a reverse genetics system for CTFV; therefore, we aimed to establish the system. Initially, the efficacy of CTFV replication was investigated in various cell lines. CTFV was found to grow in many cell types derived from different hosts and organs. Subsequently, BHK-T7 cells stably expressing T7 RNA polymerase were transfected with plasmids encoding each of the 12 CTFV gene segments, expression plasmids encoding all CTFV proteins, and a vaccinia virus RNA-capping enzyme. Following transfection, the cells were co-cultured with Vero or HeLa cells. Using this system, we rescued monoreassortants and recombinant viruses harboring peptide-tagged viral proteins. Furthermore, an improved system using Expi293F cells expressing T7 RNA polymerase was established, which enabled the generation of recombinant reporter CTFVs. In conclusion, these reverse genetics systems for CTFV will greatly contribute to the understanding of viral replication mechanisms, pathogenesis, and transmission, ultimately facilitating the development of rational treatments and candidate vaccines.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"21 2","pages":"e1012921"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828403/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012921","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Colorado tick fever virus (CTFV), which has 12-segmented double-stranded RNA genomes, is a pathogenic arbovirus that causes severe diseases in humans. However, little progress has been made in the analysis of replication mechanisms and pathogenicity. This virological constraint is due to the absence of a reverse genetics system for CTFV; therefore, we aimed to establish the system. Initially, the efficacy of CTFV replication was investigated in various cell lines. CTFV was found to grow in many cell types derived from different hosts and organs. Subsequently, BHK-T7 cells stably expressing T7 RNA polymerase were transfected with plasmids encoding each of the 12 CTFV gene segments, expression plasmids encoding all CTFV proteins, and a vaccinia virus RNA-capping enzyme. Following transfection, the cells were co-cultured with Vero or HeLa cells. Using this system, we rescued monoreassortants and recombinant viruses harboring peptide-tagged viral proteins. Furthermore, an improved system using Expi293F cells expressing T7 RNA polymerase was established, which enabled the generation of recombinant reporter CTFVs. In conclusion, these reverse genetics systems for CTFV will greatly contribute to the understanding of viral replication mechanisms, pathogenesis, and transmission, ultimately facilitating the development of rational treatments and candidate vaccines.

建立科罗拉多蜱热病毒反向遗传学系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Pathogens
PLoS Pathogens MICROBIOLOGY-PARASITOLOGY
自引率
3.00%
发文量
598
期刊介绍: Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信