mRNA-laden lipid nanoparticle-enabled humanized CD19 CAR-T-cell engineering for the eradication of leukaemic cells

IF 5.1 2区 医学 Q1 HEMATOLOGY
Zhaozhao Chen, Anqi Ren, Yingying Li, Jinhui Shu, Jianghua Wu, Hekuan Huang, Jingming Wang, Yu Hu, Heng Mei
{"title":"mRNA-laden lipid nanoparticle-enabled humanized CD19 CAR-T-cell engineering for the eradication of leukaemic cells","authors":"Zhaozhao Chen,&nbsp;Anqi Ren,&nbsp;Yingying Li,&nbsp;Jinhui Shu,&nbsp;Jianghua Wu,&nbsp;Hekuan Huang,&nbsp;Jingming Wang,&nbsp;Yu Hu,&nbsp;Heng Mei","doi":"10.1111/bjh.19988","DOIUrl":null,"url":null,"abstract":"<p>Chimeric antigen receptor T-cell (CAR-T) therapy has shown transformative potential in treating malignant tumours, with increasing global approval of CAR-T products. However, high-production costs and risks associated with viral vector-based CAR-T cells—such as insertional mutagenesis and secondary tumour formation—remain challenges. Our study introduces an innovative CAR-T engineering approach using mRNA delivered via lipid nanoparticles (LNPs), aiming to reduce costs and enhance safety while maintaining strong anti-tumour efficacy. We developed an LNP-based transfection protocol for efficient delivery of mRNA encoding full-human CAR constructs, achieving high CAR expression and significant cytotoxicity against leukaemic cells in vitro. Co-culture with Raji cells showed increased cytokine secretion and tumour cell killing by mRNA-LNP CAR-T cells. Therapeutic efficacy was further demonstrated in an NOD-scid-IL2Rγnull (NSG) mouse model with Raji engraftment, where treated mice exhibited marked tumour regression and extended survival. These findings underscore the potential of mRNA-LNPs as a non-viral, effective CAR-T engineering platform, offering a promising alternative to traditional methods that could improve CAR-T safety, efficacy and accessibility in clinical cancer immunotherapy.</p>","PeriodicalId":135,"journal":{"name":"British Journal of Haematology","volume":"206 2","pages":"628-643"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bjh.19988","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Haematology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bjh.19988","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chimeric antigen receptor T-cell (CAR-T) therapy has shown transformative potential in treating malignant tumours, with increasing global approval of CAR-T products. However, high-production costs and risks associated with viral vector-based CAR-T cells—such as insertional mutagenesis and secondary tumour formation—remain challenges. Our study introduces an innovative CAR-T engineering approach using mRNA delivered via lipid nanoparticles (LNPs), aiming to reduce costs and enhance safety while maintaining strong anti-tumour efficacy. We developed an LNP-based transfection protocol for efficient delivery of mRNA encoding full-human CAR constructs, achieving high CAR expression and significant cytotoxicity against leukaemic cells in vitro. Co-culture with Raji cells showed increased cytokine secretion and tumour cell killing by mRNA-LNP CAR-T cells. Therapeutic efficacy was further demonstrated in an NOD-scid-IL2Rγnull (NSG) mouse model with Raji engraftment, where treated mice exhibited marked tumour regression and extended survival. These findings underscore the potential of mRNA-LNPs as a non-viral, effective CAR-T engineering platform, offering a promising alternative to traditional methods that could improve CAR-T safety, efficacy and accessibility in clinical cancer immunotherapy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
4.60%
发文量
565
审稿时长
1 months
期刊介绍: The British Journal of Haematology publishes original research papers in clinical, laboratory and experimental haematology. The Journal also features annotations, reviews, short reports, images in haematology and Letters to the Editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信