Strong Electron-Withdrawing Effect Activates Metal-Free Carboxylate Anion into Efficient Active Sites for Electrocatalytic Acetylene Semihydrogenation.

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Rui Bai, Zhi-Hao Zhao, Mingxuan Liu, Wenxiu Ma, Jin Lin, Siying An, Jiaxin He, Zhenpeng Liu, Lei Zhang, Hui Mei, Jian Zhang
{"title":"Strong Electron-Withdrawing Effect Activates Metal-Free Carboxylate Anion into Efficient Active Sites for Electrocatalytic Acetylene Semihydrogenation.","authors":"Rui Bai, Zhi-Hao Zhao, Mingxuan Liu, Wenxiu Ma, Jin Lin, Siying An, Jiaxin He, Zhenpeng Liu, Lei Zhang, Hui Mei, Jian Zhang","doi":"10.1021/jacs.4c17260","DOIUrl":null,"url":null,"abstract":"<p><p>The exploration of novel and high-performance organo-electrocatalysts with well-defined active sites is vital for understanding catalytic mechanisms and replacing metal-based catalysts, but remains a formidable challenge. Here, we report metal-free trifluoroacetate as a new organo-electrocatalyst, where the strong electron-withdrawing trifluoromethyl (-CF<sub>3</sub>) group intrinsically transforms the neighboring carboxylate anions (-COO<sup>-</sup>) into highly efficient active sites for electrocatalytic acetylene semihydrogenation. The electrophilic acetylene molecule bonds to the negatively charged O<sup>-</sup> sites of the carboxylate anion via the σ-configuration. Benefiting from precise molecular engineering of electron-withdrawing groups, the ethylene partial current density presents a volcano relationship with the total natural charge of the -COO<sup>-</sup> anions. In 1 M KOH aqueous solution, trifluoroacetate delivers an ethylene partial current density of 260 mA/cm<sup>2</sup> with an ethylene Faradaic efficiency of 96.8% at -0.9 V versus the reversible hydrogen electrode (RHE) under a pure acetylene atmosphere, outperforming metal-based electrocatalysts. This work presents a new type of high-activity organo-electrocatalysts with -COO<sup>-</sup> anions as active center and promises its application in electrocatalysis.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c17260","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The exploration of novel and high-performance organo-electrocatalysts with well-defined active sites is vital for understanding catalytic mechanisms and replacing metal-based catalysts, but remains a formidable challenge. Here, we report metal-free trifluoroacetate as a new organo-electrocatalyst, where the strong electron-withdrawing trifluoromethyl (-CF3) group intrinsically transforms the neighboring carboxylate anions (-COO-) into highly efficient active sites for electrocatalytic acetylene semihydrogenation. The electrophilic acetylene molecule bonds to the negatively charged O- sites of the carboxylate anion via the σ-configuration. Benefiting from precise molecular engineering of electron-withdrawing groups, the ethylene partial current density presents a volcano relationship with the total natural charge of the -COO- anions. In 1 M KOH aqueous solution, trifluoroacetate delivers an ethylene partial current density of 260 mA/cm2 with an ethylene Faradaic efficiency of 96.8% at -0.9 V versus the reversible hydrogen electrode (RHE) under a pure acetylene atmosphere, outperforming metal-based electrocatalysts. This work presents a new type of high-activity organo-electrocatalysts with -COO- anions as active center and promises its application in electrocatalysis.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信