circNR3C2 promotes chondrogenic differentiation and cartilage repair of human adipose-derived stem cells via the hsa-miR-647/SOX9 pathway.

Q1 Health Professions
Dabiao Hou, Huajun Wang, Hao Guo, Dongbin Luo, Xiaofei Zheng, Simin Luo
{"title":"circNR3C2 promotes chondrogenic differentiation and cartilage repair of human adipose-derived stem cells via the hsa-miR-647/SOX9 pathway.","authors":"Dabiao Hou, Huajun Wang, Hao Guo, Dongbin Luo, Xiaofei Zheng, Simin Luo","doi":"10.1002/ame2.12561","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Human adipose-derived stem cells (hADSCs) are seed cells with application prospects in cartilage repair. However, the mechanism of hADSC chondrogenic differentiation is still unclear. This study identifies a novel circRNA, circNR3C2, which is significantly upregulated during the chondrogenic differentiation of hADSCs.</p><p><strong>Methods: </strong>To analyze their role in hADSC chondrogenic differentiation, hADSCs were separated and identified by flow cytometry. Thereafter, we conducted Alcian Blue staining to assess chondrogenic differentiation levels. Additionally, RT-qPCR was carried out to detect levels of the cartilage-related genes COL2, Aggrecan and SOX9. Moreover, overlapping target SOX9 and circNR3C2 miRNAs were detected by bioinformatics and luciferase analyses. Finally, the role of circNR3C2 was confirmed in vivo using animal models.</p><p><strong>Results: </strong>We confirmed that the cell surface receptors CD44, CD90 and CD105 were positively expressed on hADSCs, and their cartilage differentiation levels dramatically increased after 2 weeks. Expression of the cartilage-related genes COL2 and Aggrecan and circNR3C2 also markedly increased. CircNR3C2 overexpression enhanced cartilage differentiation of hADSCs, while up-regulating COL2, SOX9 and Aggrecan. Bioinformatics analysis identified hsa-miR-647 as the target miRNA of circNR3C2 and SOX9. Hsa-miR-647 overexpression in hADSCs can antagonize the effect of circNR3C2 on chondrogenic differentiation, and reverse its effect on regulating the expression of COL2, Aggrecan, and SOX9. We also showed that hADSCs overexpressing circNR3C2 promote cartilage repair in vivo.</p><p><strong>Conclusions: </strong>We show that circNR3C2 modulates SOX9 expression to promote hsa-miR-647-mediated hADSC chondrogenic differentiation; targeting circNR3C2 may help to develop new treatments to manage cartilage-related disorders.</p>","PeriodicalId":93869,"journal":{"name":"Animal models and experimental medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal models and experimental medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ame2.12561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Human adipose-derived stem cells (hADSCs) are seed cells with application prospects in cartilage repair. However, the mechanism of hADSC chondrogenic differentiation is still unclear. This study identifies a novel circRNA, circNR3C2, which is significantly upregulated during the chondrogenic differentiation of hADSCs.

Methods: To analyze their role in hADSC chondrogenic differentiation, hADSCs were separated and identified by flow cytometry. Thereafter, we conducted Alcian Blue staining to assess chondrogenic differentiation levels. Additionally, RT-qPCR was carried out to detect levels of the cartilage-related genes COL2, Aggrecan and SOX9. Moreover, overlapping target SOX9 and circNR3C2 miRNAs were detected by bioinformatics and luciferase analyses. Finally, the role of circNR3C2 was confirmed in vivo using animal models.

Results: We confirmed that the cell surface receptors CD44, CD90 and CD105 were positively expressed on hADSCs, and their cartilage differentiation levels dramatically increased after 2 weeks. Expression of the cartilage-related genes COL2 and Aggrecan and circNR3C2 also markedly increased. CircNR3C2 overexpression enhanced cartilage differentiation of hADSCs, while up-regulating COL2, SOX9 and Aggrecan. Bioinformatics analysis identified hsa-miR-647 as the target miRNA of circNR3C2 and SOX9. Hsa-miR-647 overexpression in hADSCs can antagonize the effect of circNR3C2 on chondrogenic differentiation, and reverse its effect on regulating the expression of COL2, Aggrecan, and SOX9. We also showed that hADSCs overexpressing circNR3C2 promote cartilage repair in vivo.

Conclusions: We show that circNR3C2 modulates SOX9 expression to promote hsa-miR-647-mediated hADSC chondrogenic differentiation; targeting circNR3C2 may help to develop new treatments to manage cartilage-related disorders.

circNR3C2通过hsa-miR-647/SOX9途径促进人脂肪源性干细胞的软骨分化和软骨修复。
背景:人脂肪源性干细胞(hADSCs)是一种在软骨修复中具有应用前景的种子细胞。然而,hADSC软骨分化的机制尚不清楚。本研究发现了一种新的环状rna circNR3C2,它在hscs的软骨分化过程中被显著上调。方法:采用流式细胞术对hADSC进行分离鉴定,分析其在hADSC成软骨分化中的作用。之后,我们进行了阿利新蓝染色来评估软骨分化水平。此外,RT-qPCR检测软骨相关基因COL2、Aggrecan和SOX9的水平。此外,通过生物信息学和荧光素酶分析检测到重叠的SOX9和circNR3C2靶mirna。最后,利用动物模型在体内证实了circNR3C2的作用。结果:我们证实细胞表面受体CD44、CD90和CD105在hscs上呈阳性表达,2周后其软骨分化水平显著提高。软骨相关基因COL2、Aggrecan和circNR3C2的表达也显著升高。CircNR3C2过表达可增强hascs的软骨分化,同时上调COL2、SOX9和Aggrecan。生物信息学分析发现hsa-miR-647是circNR3C2和SOX9的靶miRNA。Hsa-miR-647在hscs中过表达可拮抗circNR3C2对软骨分化的作用,逆转其对COL2、Aggrecan、SOX9表达的调节作用。我们还发现过表达circNR3C2的hascs在体内促进软骨修复。结论:我们发现circNR3C2调节SOX9表达促进hsa- mir -647介导的hADSC软骨分化;靶向circNR3C2可能有助于开发治疗软骨相关疾病的新疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信