Robust quantification of cellular mechanics using optical tweezers.

IF 2.4 Q3 BIOPHYSICS
Wessel S Rodenburg, Sven F A Ebben, Jorine M Eeftens
{"title":"Robust quantification of cellular mechanics using optical tweezers.","authors":"Wessel S Rodenburg, Sven F A Ebben, Jorine M Eeftens","doi":"10.1016/j.bpr.2025.100199","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanical properties of cells are closely related to function and play a crucial role in many cellular processes, including migration, differentiation, and cell fate determination. Numerous methods have been developed to assess cell mechanics under various conditions, but they often lack accuracy on biologically relevant piconewton-range forces, or have limited control over the applied force. Here, we present a straightforward approach for using optically-trapped polystyrene beads to accurately apply piconewton-range forces to adherent and suspended cells. We precisely apply a constant force to cells by means of a force-feedback system, allowing for quantification of deformation, cell stiffness and creep response from a single measurement. Using drug-induced perturbations of the cytoskeleton, we show that this approach is sensitive to detecting changes in cellular mechanical properties. Collectively, we provide a framework for using optical tweezers to apply highly accurate forces to adherent and suspended cells, and describe straightforward metrics to quantify cellular mechanical properties.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":" ","pages":"100199"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpr.2025.100199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanical properties of cells are closely related to function and play a crucial role in many cellular processes, including migration, differentiation, and cell fate determination. Numerous methods have been developed to assess cell mechanics under various conditions, but they often lack accuracy on biologically relevant piconewton-range forces, or have limited control over the applied force. Here, we present a straightforward approach for using optically-trapped polystyrene beads to accurately apply piconewton-range forces to adherent and suspended cells. We precisely apply a constant force to cells by means of a force-feedback system, allowing for quantification of deformation, cell stiffness and creep response from a single measurement. Using drug-induced perturbations of the cytoskeleton, we show that this approach is sensitive to detecting changes in cellular mechanical properties. Collectively, we provide a framework for using optical tweezers to apply highly accurate forces to adherent and suspended cells, and describe straightforward metrics to quantify cellular mechanical properties.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biophysical reports
Biophysical reports Biophysics
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
75 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信