PAK4 promotes the cytoskeletal organization and meiotic maturation via phosphorylating DDX17 in oocyte.

IF 8.2 2区 生物学 Q1 CELL BIOLOGY
Hengjie Wang, Ming Gao, Qing Cheng, Shuai Zhu, Yu Chen, Ling Gu, Xuejiang Guo, Ran Huo, Bo Xiong, Qiang Wang
{"title":"PAK4 promotes the cytoskeletal organization and meiotic maturation via phosphorylating DDX17 in oocyte.","authors":"Hengjie Wang, Ming Gao, Qing Cheng, Shuai Zhu, Yu Chen, Ling Gu, Xuejiang Guo, Ran Huo, Bo Xiong, Qiang Wang","doi":"10.1186/s12964-025-02085-3","DOIUrl":null,"url":null,"abstract":"<p><p>PAK4 has been widely reported to function in somatic cells. However, its role and the underlying mechanisms in meiotic oocytes are largely unknown. Here, we show that PAK4 deficiency significantly disrupts maturational progression and meiotic apparatus in mouse oocytes. Furthermore, based on the kinase substrate binding preference and systematic functional screening, our mechanistic investigation demonstrated that PAK4 promotes cytoskeletal organization and oocyte maturation through phosphorylating serine 597 on DDX17. Of note, we identified a marked reduction of PAK4 protein in oocytes from diabetic mice. Importantly, ectopic expression of hyperphosphorylation-mimicking DDX17 mutant (DDX17-S597D) partly prevented the meiotic defects in these diabetic oocytes, indicating that the decreased phosphorylation of DDX17 due to PAK4 insufficiency is responsible for the impaired oocyte quality. In sum, these findings unveil the pivotal role of PAK4 in oocyte development and indicate a novel mechanism controlling meiotic progression and structure.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"85"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827469/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-025-02085-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

PAK4 has been widely reported to function in somatic cells. However, its role and the underlying mechanisms in meiotic oocytes are largely unknown. Here, we show that PAK4 deficiency significantly disrupts maturational progression and meiotic apparatus in mouse oocytes. Furthermore, based on the kinase substrate binding preference and systematic functional screening, our mechanistic investigation demonstrated that PAK4 promotes cytoskeletal organization and oocyte maturation through phosphorylating serine 597 on DDX17. Of note, we identified a marked reduction of PAK4 protein in oocytes from diabetic mice. Importantly, ectopic expression of hyperphosphorylation-mimicking DDX17 mutant (DDX17-S597D) partly prevented the meiotic defects in these diabetic oocytes, indicating that the decreased phosphorylation of DDX17 due to PAK4 insufficiency is responsible for the impaired oocyte quality. In sum, these findings unveil the pivotal role of PAK4 in oocyte development and indicate a novel mechanism controlling meiotic progression and structure.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.00
自引率
0.00%
发文量
180
期刊介绍: Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior. Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信