Predicting HIV Diagnosis Among Emerging Adults Using Electronic Health Records and Health Survey Data in All of Us Research Program.

Balu Bhasuran, Yiyang Liu, Mattia Prosperi, Karen MacDonell, Sylvie Naar, Zhe He
{"title":"Predicting HIV Diagnosis Among Emerging Adults Using Electronic Health Records and Health Survey Data in All of Us Research Program.","authors":"Balu Bhasuran, Yiyang Liu, Mattia Prosperi, Karen MacDonell, Sylvie Naar, Zhe He","doi":"10.1109/bibm62325.2024.10822296","DOIUrl":null,"url":null,"abstract":"<p><p>The global decline in HIV incidence has not been mirrored in the United States, where young adults (ages 18-29) continue to account for a significant portion of new infections. In this study, we leverage the All of Us (AoU) Research Program's extensive electronic health records (EHRs) and health survey data to develop machine learning models capable of predicting HIV diagnoses at least three months before clinical identification. Among various models tested, the Support Vector Machine (SVM) model demonstrated a balanced performance, integrating clinically relevant features with robust predictive accuracy (AUC = 0.91). Risky drinking behaviors emerged as consistent top predictors across models, highlighting the importance of targeted interventions in this age group. Our findings underscore the potential of predictive analytics in enhancing HIV prevention strategies and informing public health efforts aimed at reducing HIV transmission among emerging adults.</p>","PeriodicalId":74563,"journal":{"name":"Proceedings. IEEE International Conference on Bioinformatics and Biomedicine","volume":"2024 ","pages":"5433-5440"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823436/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Bioinformatics and Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/bibm62325.2024.10822296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The global decline in HIV incidence has not been mirrored in the United States, where young adults (ages 18-29) continue to account for a significant portion of new infections. In this study, we leverage the All of Us (AoU) Research Program's extensive electronic health records (EHRs) and health survey data to develop machine learning models capable of predicting HIV diagnoses at least three months before clinical identification. Among various models tested, the Support Vector Machine (SVM) model demonstrated a balanced performance, integrating clinically relevant features with robust predictive accuracy (AUC = 0.91). Risky drinking behaviors emerged as consistent top predictors across models, highlighting the importance of targeted interventions in this age group. Our findings underscore the potential of predictive analytics in enhancing HIV prevention strategies and informing public health efforts aimed at reducing HIV transmission among emerging adults.

在我们所有人的研究项目中,使用电子健康记录和健康调查数据预测新兴成年人的艾滋病毒诊断。
全球艾滋病发病率的下降并没有反映在美国,在美国,年轻人(18-29岁)仍然占新感染的很大一部分。在这项研究中,我们利用我们所有人(AoU)研究计划的广泛电子健康记录(EHRs)和健康调查数据来开发能够在临床鉴定前至少三个月预测HIV诊断的机器学习模型。在测试的各种模型中,支持向量机(SVM)模型表现出平衡的性能,整合了临床相关特征和稳健的预测精度(AUC = 0.91)。危险的饮酒行为在所有模型中都是一致的最高预测因素,突出了在这个年龄组进行有针对性干预的重要性。我们的研究结果强调了预测分析在加强艾滋病毒预防策略和为旨在减少艾滋病毒在新生成人中的传播的公共卫生工作提供信息方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信