Viet Hung Dao, David Gunawan, Robert Kohn, Minh-Ngoc Tran, Guy E Hawkins, Scott D Brown
{"title":"Bayesian inference for evidence accumulation models with regressors.","authors":"Viet Hung Dao, David Gunawan, Robert Kohn, Minh-Ngoc Tran, Guy E Hawkins, Scott D Brown","doi":"10.1037/met0000669","DOIUrl":null,"url":null,"abstract":"<p><p>Evidence accumulation models (EAMs) are an important class of cognitive models used to analyze both response time and response choice data recorded from decision-making tasks. Developments in estimation procedures have helped EAMs become important both in basic scientific applications and solution-focused applied work. Hierarchical Bayesian estimation frameworks for the linear ballistic accumulator (LBA) model and the diffusion decision model (DDM) have been widely used, but still suffer from some key limitations, particularly for large sample sizes, for models with many parameters, and when linking decision-relevant covariates to model parameters. We extend upon previous work with methods for estimating the LBA and DDM in hierarchical Bayesian frameworks that include random effects that are correlated between people and include regression-model links between decision-relevant covariates and model parameters. Our methods work equally well in cases where the covariates are measured once per person (e.g., personality traits or psychological tests) or once per decision (e.g., neural or physiological data). We provide methods for exact Bayesian inference, using particle-based Markov chain Monte-Carlo, and also approximate methods based on variational Bayesian (VB) inference. The VB methods are sufficiently fast and efficient that they can address large-scale estimation problems, such as with very large data sets. We evaluate the performance of these methods in applications to data from three existing experiments. Detailed algorithmic implementations and code are freely available for all methods. (PsycInfo Database Record (c) 2025 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000669","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Evidence accumulation models (EAMs) are an important class of cognitive models used to analyze both response time and response choice data recorded from decision-making tasks. Developments in estimation procedures have helped EAMs become important both in basic scientific applications and solution-focused applied work. Hierarchical Bayesian estimation frameworks for the linear ballistic accumulator (LBA) model and the diffusion decision model (DDM) have been widely used, but still suffer from some key limitations, particularly for large sample sizes, for models with many parameters, and when linking decision-relevant covariates to model parameters. We extend upon previous work with methods for estimating the LBA and DDM in hierarchical Bayesian frameworks that include random effects that are correlated between people and include regression-model links between decision-relevant covariates and model parameters. Our methods work equally well in cases where the covariates are measured once per person (e.g., personality traits or psychological tests) or once per decision (e.g., neural or physiological data). We provide methods for exact Bayesian inference, using particle-based Markov chain Monte-Carlo, and also approximate methods based on variational Bayesian (VB) inference. The VB methods are sufficiently fast and efficient that they can address large-scale estimation problems, such as with very large data sets. We evaluate the performance of these methods in applications to data from three existing experiments. Detailed algorithmic implementations and code are freely available for all methods. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
期刊介绍:
Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.