Towards an interpretable deep learning model of cancer.

IF 6.8 1区 医学 Q1 ONCOLOGY
Avlant Nilsson, Nikolaos Meimetis, Douglas A Lauffenburger
{"title":"Towards an interpretable deep learning model of cancer.","authors":"Avlant Nilsson, Nikolaos Meimetis, Douglas A Lauffenburger","doi":"10.1038/s41698-025-00822-y","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer is a manifestation of dysfunctional cell states. It emerges from an interplay of intrinsic and extrinsic factors that disrupt cellular dynamics, including genetic and epigenetic alterations, as well as the tumor microenvironment. This complexity can make it challenging to infer molecular causes for treating the disease. This may be addressed by system-wide computer models of cells, as they allow rapid generation and testing of hypotheses that would be too slow or impossible to perform in the laboratory and clinic. However, so far, such models have been impeded by both experimental and computational limitations. In this perspective, we argue that they can now be achieved using deep learning algorithms to integrate omics data and prior knowledge of molecular networks. Such models would have many applications in precision oncology, e.g., for identifying drug targets and biomarkers, predicting resistance mechanisms and toxicity effects of drugs, or simulating cell-cell interactions in the microenvironment.</p>","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":"9 1","pages":"46"},"PeriodicalIF":6.8000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825879/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41698-025-00822-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer is a manifestation of dysfunctional cell states. It emerges from an interplay of intrinsic and extrinsic factors that disrupt cellular dynamics, including genetic and epigenetic alterations, as well as the tumor microenvironment. This complexity can make it challenging to infer molecular causes for treating the disease. This may be addressed by system-wide computer models of cells, as they allow rapid generation and testing of hypotheses that would be too slow or impossible to perform in the laboratory and clinic. However, so far, such models have been impeded by both experimental and computational limitations. In this perspective, we argue that they can now be achieved using deep learning algorithms to integrate omics data and prior knowledge of molecular networks. Such models would have many applications in precision oncology, e.g., for identifying drug targets and biomarkers, predicting resistance mechanisms and toxicity effects of drugs, or simulating cell-cell interactions in the microenvironment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.90
自引率
1.30%
发文量
87
审稿时长
18 weeks
期刊介绍: Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信