Automated hallucination detection for synthetic CT images used in MR-only radiotherapy workflows.

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Abdul K Parchur, Mohammad Zarenia, Colette Gage, Eric S Paulson, Ergun Ahunbay
{"title":"Automated hallucination detection for synthetic CT images used in MR-only radiotherapy workflows.","authors":"Abdul K Parchur, Mohammad Zarenia, Colette Gage, Eric S Paulson, Ergun Ahunbay","doi":"10.1088/1361-6560/adb5eb","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Artificial intelligence (AI)-generated synthetic CT (sCT) images have become commercially available to provide electron densities and reference anatomies in MR-only radiotherapy workflows. However, hallucinations (false regions of bone or air) introduced in AI-generated sCT images may affect the accuracy of dose calculation and patient setup verification. We developed a tool to detect bone hallucinations and/or inaccuracies in AI-generated pelvic sCT images used in MR-only workflows.<i>Approach</i>. A deep learning auto segmentation (DLAS) model was trained to auto-segment bone on MR images. The model was implemented with a 3D SegResNet network architecture using the MONAI framework with a training dataset of 86 Dixon MR image sets paired with their corresponding ground truth contours derived from planning CT images deformed to the MR images. The model performance was then assessed on an independent testing dataset (<i>n</i>= 10).<i>Main results</i>. The DLAS model-based hallucination screener identified hallucinations in bone structures using daily MR images and accurately flagged these regions on sCT images. The sensitivity of the screener is adjustable based on the distance of discrepancies between bone regions derived from sCT to bone contours generated by the DLAS. The average specificity of the DLAS model was 0.78, 0.93 and 0.98 for distance parameters of 0.8, 1.0 and 1.2 cm, respectively. The screener identified false high-density hallucination regions in the abdomen of AI-generated sCT images for all testing patients, highlighting potential issues with the training data used for the AI sCT model.<i>Significance</i>. A hallucination screener for AI-generated pelvic sCT images was developed and implemented for routine clinical use. The screener serves as an important quality assurance tool for MR-only radiotherapy workflows. By identifying potential AI-generated errors, the hallucination screener may improve the safety and accuracy of sCT images used for dose calculation and image guidance.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/adb5eb","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective. Artificial intelligence (AI)-generated synthetic CT (sCT) images have become commercially available to provide electron densities and reference anatomies in MR-only radiotherapy workflows. However, hallucinations (false regions of bone or air) introduced in AI-generated sCT images may affect the accuracy of dose calculation and patient setup verification. We developed a tool to detect bone hallucinations and/or inaccuracies in AI-generated pelvic sCT images used in MR-only workflows.Approach. A deep learning auto segmentation (DLAS) model was trained to auto-segment bone on MR images. The model was implemented with a 3D SegResNet network architecture using the MONAI framework with a training dataset of 86 Dixon MR image sets paired with their corresponding ground truth contours derived from planning CT images deformed to the MR images. The model performance was then assessed on an independent testing dataset (n= 10).Main results. The DLAS model-based hallucination screener identified hallucinations in bone structures using daily MR images and accurately flagged these regions on sCT images. The sensitivity of the screener is adjustable based on the distance of discrepancies between bone regions derived from sCT to bone contours generated by the DLAS. The average specificity of the DLAS model was 0.78, 0.93 and 0.98 for distance parameters of 0.8, 1.0 and 1.2 cm, respectively. The screener identified false high-density hallucination regions in the abdomen of AI-generated sCT images for all testing patients, highlighting potential issues with the training data used for the AI sCT model.Significance. A hallucination screener for AI-generated pelvic sCT images was developed and implemented for routine clinical use. The screener serves as an important quality assurance tool for MR-only radiotherapy workflows. By identifying potential AI-generated errors, the hallucination screener may improve the safety and accuracy of sCT images used for dose calculation and image guidance.

用于纯磁共振放疗工作流程的合成 CT 图像的幻觉自动检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信