Rebeca Kawahara, Liisa Kautto, Naaz Bansal, Priya Dipta, The Huong Chau, Benoit Liquet-Weiland, Seong Beom Ahn, Morten Thaysen-Andersen
{"title":"HEXB Drives Raised Paucimannosylation in Colorectal Cancer and Stratifies Patient Risk.","authors":"Rebeca Kawahara, Liisa Kautto, Naaz Bansal, Priya Dipta, The Huong Chau, Benoit Liquet-Weiland, Seong Beom Ahn, Morten Thaysen-Andersen","doi":"10.1016/j.mcpro.2025.100927","DOIUrl":null,"url":null,"abstract":"<p><p>Noninvasive prognostic markers are needed to improve the survival of colorectal cancer (CRC) patients. Toward this goal, we applied untargeted systems glycobiology approaches to snap-frozen and formalin-fixed paraffin-embedded tumor tissues and peripheral blood mononuclear cells from CRC patients spanning different disease stages and matching controls to faithfully uncover molecular changes associated with CRC. Quantitative glycomics and immunohistochemistry revealed that noncanonical paucimannosidic N-glycans are elevated in CRC tumors relative to normal adjacent tissues. Cell origin-focused glycoproteomics enabled using the well-curated Human Protein Atlas combined with immunohistochemistry of CRC tumor tissues recapitulated these findings and indicated that the paucimannosidic proteins were in part from tumor-infiltrating monocytes (e.g., MPO, AZU1) and of CRC cell origin (e.g., LGALS3BP, PSAP). Biosynthetically explaining these observations, N-acetyl-β-D-hexosaminidase (Hex) subunit β (HEXB) was found to be overexpressed in CRC tissues relative to normal adjacent colorectal tissues and colocalization and enzyme inhibition studies confirmed that HEXB facilitates paucimannosidic protein biosynthesis in CRC cells. Employing a sensitive, quick, and robust enzyme activity assay, we then showed that Hex activity was elevated in plasma and peripheral blood mononuclear cells from patients with advanced CRC relative to controls and those with early-stage disease. Surveying a large donor cohort, the plasma Hex activity was found to be raised in CRC patients relative to normal controls and correlated with the 5-year survival of CRC patients indicating that elevated plasma Hex activity is a potential disease risk marker for patient outcome. Our glycoproteomics-driven findings open avenues for better prognostication and disease risk stratification in CRC.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100927"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2025.100927","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Noninvasive prognostic markers are needed to improve the survival of colorectal cancer (CRC) patients. Toward this goal, we applied untargeted systems glycobiology approaches to snap-frozen and formalin-fixed paraffin-embedded tumor tissues and peripheral blood mononuclear cells from CRC patients spanning different disease stages and matching controls to faithfully uncover molecular changes associated with CRC. Quantitative glycomics and immunohistochemistry revealed that noncanonical paucimannosidic N-glycans are elevated in CRC tumors relative to normal adjacent tissues. Cell origin-focused glycoproteomics enabled using the well-curated Human Protein Atlas combined with immunohistochemistry of CRC tumor tissues recapitulated these findings and indicated that the paucimannosidic proteins were in part from tumor-infiltrating monocytes (e.g., MPO, AZU1) and of CRC cell origin (e.g., LGALS3BP, PSAP). Biosynthetically explaining these observations, N-acetyl-β-D-hexosaminidase (Hex) subunit β (HEXB) was found to be overexpressed in CRC tissues relative to normal adjacent colorectal tissues and colocalization and enzyme inhibition studies confirmed that HEXB facilitates paucimannosidic protein biosynthesis in CRC cells. Employing a sensitive, quick, and robust enzyme activity assay, we then showed that Hex activity was elevated in plasma and peripheral blood mononuclear cells from patients with advanced CRC relative to controls and those with early-stage disease. Surveying a large donor cohort, the plasma Hex activity was found to be raised in CRC patients relative to normal controls and correlated with the 5-year survival of CRC patients indicating that elevated plasma Hex activity is a potential disease risk marker for patient outcome. Our glycoproteomics-driven findings open avenues for better prognostication and disease risk stratification in CRC.
期刊介绍:
The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action.
The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data.
Scope:
-Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights
-Novel experimental and computational technologies
-Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes
-Pathway and network analyses of signaling that focus on the roles of post-translational modifications
-Studies of proteome dynamics and quality controls, and their roles in disease
-Studies of evolutionary processes effecting proteome dynamics, quality and regulation
-Chemical proteomics, including mechanisms of drug action
-Proteomics of the immune system and antigen presentation/recognition
-Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease
-Clinical and translational studies of human diseases
-Metabolomics to understand functional connections between genes, proteins and phenotypes