{"title":"The Nuclear and Mitochondrial Genomes of Amoebophrya sp. ex Karlodinium veneficum.","authors":"Wesley DeMontigny, Tsvetan Bachvaroff","doi":"10.1093/g3journal/jkaf030","DOIUrl":null,"url":null,"abstract":"<p><p>Dinoflagellates are a diverse group of microplankton that include free-living, symbiotic, and parasitic species. Amoebophrya, a basal lineage of parasitic dinoflagellates, infects a variety of marine microorganisms, including harmful-bloom-forming algae. Although there are currently three published Amoebophrya genomes, this genus has considerable genomic diversity. We add to the growing genomic data for Amoebophrya with an annotated genome assembly for Amoebophrya sp. ex Karlodinium veneficum. This species appears to translate all three canonical stop codons contextually. Stop codons are present in the open reading frames of about half of the predicted gene models, including genes essential for cellular function. The in-frame stop codons are likely translated by suppressor tRNAs that were identified in the assembly. We also assembled the mitochondrial genome, which has remained elusive in the previous Amoebophrya genome assemblies. The mitochondrial genome assembly consists of many fragments with high sequence identity in the genes but low sequence identity in intergenic regions. Nuclear and mitochondrially-encoded proteins indicate that Amoebophrya sp. ex K. veneficum does not have a bipartite electron transport chain, unlike previously analyzed Amoebophrya species. This study highlights the importance of analyzing multiple genomes from highly diverse genera such as Amoebophrya.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkaf030","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Dinoflagellates are a diverse group of microplankton that include free-living, symbiotic, and parasitic species. Amoebophrya, a basal lineage of parasitic dinoflagellates, infects a variety of marine microorganisms, including harmful-bloom-forming algae. Although there are currently three published Amoebophrya genomes, this genus has considerable genomic diversity. We add to the growing genomic data for Amoebophrya with an annotated genome assembly for Amoebophrya sp. ex Karlodinium veneficum. This species appears to translate all three canonical stop codons contextually. Stop codons are present in the open reading frames of about half of the predicted gene models, including genes essential for cellular function. The in-frame stop codons are likely translated by suppressor tRNAs that were identified in the assembly. We also assembled the mitochondrial genome, which has remained elusive in the previous Amoebophrya genome assemblies. The mitochondrial genome assembly consists of many fragments with high sequence identity in the genes but low sequence identity in intergenic regions. Nuclear and mitochondrially-encoded proteins indicate that Amoebophrya sp. ex K. veneficum does not have a bipartite electron transport chain, unlike previously analyzed Amoebophrya species. This study highlights the importance of analyzing multiple genomes from highly diverse genera such as Amoebophrya.
期刊介绍:
G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights.
G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.