Epigenetics in evolution and adaptation to environmental challenges: pathways for disease prevention and treatment.

IF 3 4区 医学 Q2 GENETICS & HEREDITY
Epigenomics Pub Date : 2025-04-01 Epub Date: 2025-02-13 DOI:10.1080/17501911.2025.2464529
Hamid Mostafavi Abdolmaleky, Shabnam Nohesara, Jin-Rong Zhou, Sam Thiagalingam
{"title":"Epigenetics in evolution and adaptation to environmental challenges: pathways for disease prevention and treatment.","authors":"Hamid Mostafavi Abdolmaleky, Shabnam Nohesara, Jin-Rong Zhou, Sam Thiagalingam","doi":"10.1080/17501911.2025.2464529","DOIUrl":null,"url":null,"abstract":"<p><p>Adaptation to challenging environmental conditions is crucial for the survival/fitness of all organisms. Alongside genetic mutations that provide adaptive potential during environmental challenges, epigenetic modifications offer dynamic, reversible, and rapid mechanisms for regulating gene expression in response to environmental changes in both evolution and daily life, without altering DNA sequences or relying on accidental favorable mutations. The widespread conservation of diverse epigenetic mechanisms - like DNA methylation, histone modifications, and RNA interference across diverse species, including plants - underscores their significance in evolutionary biology. Remarkably, environmentally induced epigenetic alterations are passed to daughter cells and inherited transgenerationally through germline cells, shaping offspring phenotypes while preserving adaptive epigenetic memory. Throughout anthropoid evolution, epigenetic modifications have played crucial roles in: i) suppressing transposable elements and viral genomes intruding into the host genome; ii) inactivating one of the X chromosomes in female cells to balance gene dosage; iii) genetic imprinting to ensure expression from one parental allele; iv) regulating functional alleles to compensate for dysfunctional ones; and v) modulating the epigenome and transcriptome in response to influence from the gut microbiome among other functions. Understanding the interplay between environmental factors and epigenetic processes may provide valuable insights into developmental plasticity, evolutionary dynamics, and disease susceptibility.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"317-333"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11970782/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17501911.2025.2464529","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Adaptation to challenging environmental conditions is crucial for the survival/fitness of all organisms. Alongside genetic mutations that provide adaptive potential during environmental challenges, epigenetic modifications offer dynamic, reversible, and rapid mechanisms for regulating gene expression in response to environmental changes in both evolution and daily life, without altering DNA sequences or relying on accidental favorable mutations. The widespread conservation of diverse epigenetic mechanisms - like DNA methylation, histone modifications, and RNA interference across diverse species, including plants - underscores their significance in evolutionary biology. Remarkably, environmentally induced epigenetic alterations are passed to daughter cells and inherited transgenerationally through germline cells, shaping offspring phenotypes while preserving adaptive epigenetic memory. Throughout anthropoid evolution, epigenetic modifications have played crucial roles in: i) suppressing transposable elements and viral genomes intruding into the host genome; ii) inactivating one of the X chromosomes in female cells to balance gene dosage; iii) genetic imprinting to ensure expression from one parental allele; iv) regulating functional alleles to compensate for dysfunctional ones; and v) modulating the epigenome and transcriptome in response to influence from the gut microbiome among other functions. Understanding the interplay between environmental factors and epigenetic processes may provide valuable insights into developmental plasticity, evolutionary dynamics, and disease susceptibility.

进化和适应环境挑战的表观遗传学:疾病预防和治疗的途径。
适应具有挑战性的环境条件对所有生物的生存/健康至关重要。除了在环境挑战中提供适应潜力的基因突变外,表观遗传修饰还提供了动态、可逆和快速的机制来调节基因表达,以应对进化和日常生活中的环境变化,而不改变DNA序列或依赖于偶然的有利突变。多种表观遗传机制(如DNA甲基化、组蛋白修饰和RNA干扰)在不同物种(包括植物)中的广泛保存,强调了它们在进化生物学中的重要性。值得注意的是,环境诱导的表观遗传改变传递给子细胞,并通过生殖系细胞代代遗传,在保持适应性表观遗传记忆的同时塑造后代表型。在类人猿进化过程中,表观遗传修饰在以下方面发挥了至关重要的作用:1)抑制转座因子和病毒基因组侵入宿主基因组;ii)使雌性细胞中的一条X染色体失活,以平衡基因剂量;Iii)遗传印记以确保来自一个亲本等位基因的表达;Iv)调节功能等位基因以补偿功能失调的等位基因;v)调节表观基因组和转录组以响应肠道微生物组的影响以及其他功能。了解环境因素和表观遗传过程之间的相互作用可能为发育可塑性、进化动力学和疾病易感性提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Epigenomics
Epigenomics GENETICS & HEREDITY-
CiteScore
5.80
自引率
2.60%
发文量
95
审稿时长
>12 weeks
期刊介绍: Epigenomics provides the forum to address the rapidly progressing research developments in this ever-expanding field; to report on the major challenges ahead and critical advances that are propelling the science forward. The journal delivers this information in concise, at-a-glance article formats – invaluable to a time constrained community. Substantial developments in our current knowledge and understanding of genomics and epigenetics are constantly being made, yet this field is still in its infancy. Epigenomics provides a critical overview of the latest and most significant advances as they unfold and explores their potential application in the clinical setting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信