{"title":"Histamine H<sub>3</sub> receptor activation increases the firing of striatal medium spiny neurons in slices from infantile rats.","authors":"Carolina González-Sandoval, Isabel Godínez-Ramos, José-Antonio Arias-Montaño, Jaime Barral","doi":"10.1139/cjpp-2024-0240","DOIUrl":null,"url":null,"abstract":"<p><p>Striatal medium spiny neurons (MSN) form two subpopulations (MSN-D<sub>1</sub> and MSN-D<sub>2</sub>) according to the expression of dopamine D<sub>1</sub> or D<sub>2</sub> receptors and their target regions. The activation of postsynaptic histamine H<sub>1</sub> and H<sub>2</sub> receptors increases MSN-D<sub>1</sub> and MSN-D<sub>2</sub> excitability. Since MSN also express H<sub>3</sub> receptors (H<sub>3</sub>Rs), in this work we explored the effect of their activation on MSN firing. Electrophysiological recordings (whole-cell patch-clamp, current-clamp mode) were conducted on forebrain slices from infantile rats (12-16 postnatal days). In both MSN-D<sub>1</sub> and MSN-D<sub>2</sub> perfusion with the H<sub>3</sub>R agonist immepip (1 µmol/L) increased neuronal firing evoked by current injection, an effect reproduced by R-α-methylhistamine (1 µmol/L) and prevented by the antagonist clobenpropit (10 µmol/L). Blockade of N- or P/Q-type voltage-activated calcium channels by ω-conotoxin-GVIA (1 µmol/L) or ω-agatoxin-TK (400 nmol/L) increased MSN firing but did not preclude the immepip effect. The potassium channel blockers 4-aminopyridine (1 mmol/L) and tetraethylammonium (300 µmol/L) increased neuronal firing and prevented the immepip action. Likewise, the K<sub>V</sub>7 channel blocker XE-991 (10 µmol/L) and the muscarinic receptor agonist carbachol (10 µmol/L) increased MSN firing frequency and occluded the immepip effect. These data indicate that the activation of postsynaptic H<sub>3</sub>Rs facilitates MSN-D<sub>1</sub> and MSN-D<sub>2</sub> firing by inhibiting K<sub>V</sub>7 potassium channels.</p>","PeriodicalId":9520,"journal":{"name":"Canadian journal of physiology and pharmacology","volume":" ","pages":"134-145"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of physiology and pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1139/cjpp-2024-0240","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Striatal medium spiny neurons (MSN) form two subpopulations (MSN-D1 and MSN-D2) according to the expression of dopamine D1 or D2 receptors and their target regions. The activation of postsynaptic histamine H1 and H2 receptors increases MSN-D1 and MSN-D2 excitability. Since MSN also express H3 receptors (H3Rs), in this work we explored the effect of their activation on MSN firing. Electrophysiological recordings (whole-cell patch-clamp, current-clamp mode) were conducted on forebrain slices from infantile rats (12-16 postnatal days). In both MSN-D1 and MSN-D2 perfusion with the H3R agonist immepip (1 µmol/L) increased neuronal firing evoked by current injection, an effect reproduced by R-α-methylhistamine (1 µmol/L) and prevented by the antagonist clobenpropit (10 µmol/L). Blockade of N- or P/Q-type voltage-activated calcium channels by ω-conotoxin-GVIA (1 µmol/L) or ω-agatoxin-TK (400 nmol/L) increased MSN firing but did not preclude the immepip effect. The potassium channel blockers 4-aminopyridine (1 mmol/L) and tetraethylammonium (300 µmol/L) increased neuronal firing and prevented the immepip action. Likewise, the KV7 channel blocker XE-991 (10 µmol/L) and the muscarinic receptor agonist carbachol (10 µmol/L) increased MSN firing frequency and occluded the immepip effect. These data indicate that the activation of postsynaptic H3Rs facilitates MSN-D1 and MSN-D2 firing by inhibiting KV7 potassium channels.
期刊介绍:
Published since 1929, the Canadian Journal of Physiology and Pharmacology is a monthly journal that reports current research in all aspects of physiology, nutrition, pharmacology, and toxicology, contributed by recognized experts and scientists. It publishes symposium reviews and award lectures and occasionally dedicates entire issues or portions of issues to subjects of special interest to its international readership. The journal periodically publishes a “Made In Canada” special section that features invited review articles from internationally recognized scientists who have received some of their training in Canada.