{"title":"Inferring tumor purity using multi-omics data based on a uniform machine learning framework MoTP.","authors":"Qiqi Lu, Zhixian Liu, Xiaosheng Wang","doi":"10.1093/bib/bbaf056","DOIUrl":null,"url":null,"abstract":"<p><p>Existing algorithms for assessing tumor purity are limited to a single omics data, such as gene expression, somatic copy number variations, somatic mutations, and DNA methylation. Here we proposed the machine learning Multi-omics Tumor Purity prediction (MoTP) algorithm to estimate tumor purity based on multiple types of omics data. MoTP utilizes the Bayesian Regularized Neural Networks as the prediction algorithm, and Consensus Tumor Purity Estimates as labels. We trained MoTP using multi-omics data (mRNA, microRNA, long non-coding RNA, and DNA methylation) across 21 TCGA solid cancer types. By testing MoTP in TCGA validation sets, TCGA test sets, and eight datasets outside the TCGA cancer cohorts, we showed that although MoTP could achieve excellent performance in predicting tumor purity based on a single omics data type, the integration of multiple single omics data-based predictions can enhance the prediction performance. Moreover, we demonstrated the robustness of MoTP by testing it in datasets with Gaussian noise and feature missing. Benchmark analysis showed that MoTP outperformed most established tumor purity prediction algorithms, and that it required less running time and computational resource to fulfill the predictive task. Thus, MoTP would be an attractive option for computational tumor purity inference.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11826339/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf056","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Existing algorithms for assessing tumor purity are limited to a single omics data, such as gene expression, somatic copy number variations, somatic mutations, and DNA methylation. Here we proposed the machine learning Multi-omics Tumor Purity prediction (MoTP) algorithm to estimate tumor purity based on multiple types of omics data. MoTP utilizes the Bayesian Regularized Neural Networks as the prediction algorithm, and Consensus Tumor Purity Estimates as labels. We trained MoTP using multi-omics data (mRNA, microRNA, long non-coding RNA, and DNA methylation) across 21 TCGA solid cancer types. By testing MoTP in TCGA validation sets, TCGA test sets, and eight datasets outside the TCGA cancer cohorts, we showed that although MoTP could achieve excellent performance in predicting tumor purity based on a single omics data type, the integration of multiple single omics data-based predictions can enhance the prediction performance. Moreover, we demonstrated the robustness of MoTP by testing it in datasets with Gaussian noise and feature missing. Benchmark analysis showed that MoTP outperformed most established tumor purity prediction algorithms, and that it required less running time and computational resource to fulfill the predictive task. Thus, MoTP would be an attractive option for computational tumor purity inference.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.