Pia Keukeleire, Jonathan D Rosen, Angelina Göbel-Knapp, Kilian Salomon, Max Schubach, Martin Kircher
{"title":"Using individual barcodes to increase quantification power of massively parallel reporter assays.","authors":"Pia Keukeleire, Jonathan D Rosen, Angelina Göbel-Knapp, Kilian Salomon, Max Schubach, Martin Kircher","doi":"10.1186/s12859-025-06065-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Massively parallel reporter assays (MPRAs) are an experimental technology for measuring the activity of thousands of candidate regulatory sequences or their variants in parallel, where the activity of individual sequences is measured from pools of sequence-tagged reporter genes. Activity is derived from the ratio of transcribed RNA to input DNA counts of associated tag sequences in each reporter construct, so-called barcodes. Recently, tools specifically designed to analyze MPRA data were developed that attempt to model the count data, accounting for its inherent variation. Of these tools, MPRAnalyze and mpralm are most widely used. MPRAnalyze models barcode counts to estimate the transcription rate of each sequence. While it has increased statistical power and robustness against outliers compared to mpralm, it is slow and has a high false discovery rate. Mpralm, a tool built on the R package Limma, estimates log fold-changes between different sequences. As opposed to MPRAnalyze, it is fast and has a low false discovery rate but is susceptible to outliers and has less statistical power.</p><p><strong>Results: </strong>We propose BCalm, an MPRA analysis framework aimed at addressing the limitations of the existing tools. BCalm is an adaptation of mpralm, but models individual barcode counts instead of aggregating counts per sequence. Leaving out the aggregation step increases statistical power and improves robustness to outliers, while being fast and precise. We show the improved performance over existing methods on both simulated MPRA data and a lentiviral MPRA library of 166,508 target sequences, including 82,258 allelic variants. Further, BCalm adds functionality beyond the existing mpralm package, such as preparing count input files from MPRAsnakeflow, as well as an option to test for sequences with enhancing or repressing activity. Its built-in plotting functionalities allow for easy interpretation of the results.</p><p><strong>Conclusions: </strong>With BCalm, we provide a new tool for analyzing MPRA data which is robust and accurate on real MPRA datasets. The package is available at https://github.com/kircherlab/BCalm .</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"52"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827149/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06065-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Massively parallel reporter assays (MPRAs) are an experimental technology for measuring the activity of thousands of candidate regulatory sequences or their variants in parallel, where the activity of individual sequences is measured from pools of sequence-tagged reporter genes. Activity is derived from the ratio of transcribed RNA to input DNA counts of associated tag sequences in each reporter construct, so-called barcodes. Recently, tools specifically designed to analyze MPRA data were developed that attempt to model the count data, accounting for its inherent variation. Of these tools, MPRAnalyze and mpralm are most widely used. MPRAnalyze models barcode counts to estimate the transcription rate of each sequence. While it has increased statistical power and robustness against outliers compared to mpralm, it is slow and has a high false discovery rate. Mpralm, a tool built on the R package Limma, estimates log fold-changes between different sequences. As opposed to MPRAnalyze, it is fast and has a low false discovery rate but is susceptible to outliers and has less statistical power.
Results: We propose BCalm, an MPRA analysis framework aimed at addressing the limitations of the existing tools. BCalm is an adaptation of mpralm, but models individual barcode counts instead of aggregating counts per sequence. Leaving out the aggregation step increases statistical power and improves robustness to outliers, while being fast and precise. We show the improved performance over existing methods on both simulated MPRA data and a lentiviral MPRA library of 166,508 target sequences, including 82,258 allelic variants. Further, BCalm adds functionality beyond the existing mpralm package, such as preparing count input files from MPRAsnakeflow, as well as an option to test for sequences with enhancing or repressing activity. Its built-in plotting functionalities allow for easy interpretation of the results.
Conclusions: With BCalm, we provide a new tool for analyzing MPRA data which is robust and accurate on real MPRA datasets. The package is available at https://github.com/kircherlab/BCalm .
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.