An investigation of a passive BCI's performance for different body postures and presentation modalities.

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Diana-Eliza Gherman, Marius Klug, Laurens Ruben Krol, Thorsten O Zander
{"title":"An investigation of a passive BCI's performance for different body postures and presentation modalities.","authors":"Diana-Eliza Gherman, Marius Klug, Laurens Ruben Krol, Thorsten O Zander","doi":"10.1088/2057-1976/adb58b","DOIUrl":null,"url":null,"abstract":"<p><p>Passive brain-computer interfaces (passive BCIs, pBCIs) enable computers to unobtrusively decipher aspects of a user's mental state in real time from recordings of brain activity, e.g. electroencephalography (EEG). When used during human-computer interaction (HCI), this allows a computer to dynamically adapt for enhancing the subjective user experience. For transitioning from controlled laboratory environments to practical applications, understanding BCI performance in real contexts is of utmost importance. Here, Virtual Reality (VR) can play a unique role: both as a fully controllable simulation of a realistic environment and as an independent, increasingly popular real application. Given the potential of VR as a dynamic and controllable environment, and the capability of pBCIs to enable novel modes of interaction, it is tempting to envision a future where pBCI and VR are seamlessly integrated. However, the simultaneous use of these two technologies - both of which are head-mounted - presents new challenges. Due to their immediate proximity, electromagnetic artifacts can arise, contaminating the EEG. Furthermore, the active movements promoted by VR can induce mechanical and muscular artifacts in the EEG. The varying body postures and display preferences of users further complicate the practical application of pBCIs. To address these challenges, the current study investigates the influence of body posture (sitting vs. standing) and display media (computer screen vs. VR) on the performance of a pBCI in assessing cognitive load. Our results show that these conditions indeed led to some changes in the EEG data; nevertheless, the ability of pBCIs to detect cognitive load remained largely unaffected. However, when a classifier trained in one context (body posture or modality) was applied to another (e.g., cross-task application), reductions in classification accuracy were observed. As HCI moves towards increasingly adaptive and more interactive designs, these findings support the expansive potential of pBCIs in VR contexts.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/adb58b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Passive brain-computer interfaces (passive BCIs, pBCIs) enable computers to unobtrusively decipher aspects of a user's mental state in real time from recordings of brain activity, e.g. electroencephalography (EEG). When used during human-computer interaction (HCI), this allows a computer to dynamically adapt for enhancing the subjective user experience. For transitioning from controlled laboratory environments to practical applications, understanding BCI performance in real contexts is of utmost importance. Here, Virtual Reality (VR) can play a unique role: both as a fully controllable simulation of a realistic environment and as an independent, increasingly popular real application. Given the potential of VR as a dynamic and controllable environment, and the capability of pBCIs to enable novel modes of interaction, it is tempting to envision a future where pBCI and VR are seamlessly integrated. However, the simultaneous use of these two technologies - both of which are head-mounted - presents new challenges. Due to their immediate proximity, electromagnetic artifacts can arise, contaminating the EEG. Furthermore, the active movements promoted by VR can induce mechanical and muscular artifacts in the EEG. The varying body postures and display preferences of users further complicate the practical application of pBCIs. To address these challenges, the current study investigates the influence of body posture (sitting vs. standing) and display media (computer screen vs. VR) on the performance of a pBCI in assessing cognitive load. Our results show that these conditions indeed led to some changes in the EEG data; nevertheless, the ability of pBCIs to detect cognitive load remained largely unaffected. However, when a classifier trained in one context (body posture or modality) was applied to another (e.g., cross-task application), reductions in classification accuracy were observed. As HCI moves towards increasingly adaptive and more interactive designs, these findings support the expansive potential of pBCIs in VR contexts.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信