{"title":"Honeycombs - their variety, topology and symmetry.","authors":"Zbigniew Dauter, Mariusz Jaskolski","doi":"10.1107/S2053273325000889","DOIUrl":null,"url":null,"abstract":"<p><p>The double-layer honeycomb with hexagonal cells, three rhombic faces between the two layers and p3m1 layer space-group symmetry, used universally by honeybees, is often considered to be the most efficient (from the point of view of wax economy) and the only honeycomb manufactured by bees. However, another variant of a symmetric and periodic double-layer hexagonal honeycomb with two hexagons and two rhombi between the two layers and slightly better wax economy was discovered theoretically in 1964 by Fejes Tóth and found in nature some years later. The present work shows that there is yet another possibility, with the interface formed by one hexagon and two quadrangles, in addition to the trivial case with flat hexagonal cell bottoms and very poor wax economy. Moreover, we demonstrate that the geometry of the Fejes Tóth honeycomb can be optimized for even better wax economy. All the theoretical honeycomb types are derived using the principle of Dirichlet-domain construction and shown to have more and less symmetric variants. Wax economy is calculated for each case, confirming that indeed the modified Fejes Tóth honeycomb is the most efficient, while the trivial flat-bottom case is the least.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"159-166"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873813/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section A: Foundations and Advances","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1107/S2053273325000889","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The double-layer honeycomb with hexagonal cells, three rhombic faces between the two layers and p3m1 layer space-group symmetry, used universally by honeybees, is often considered to be the most efficient (from the point of view of wax economy) and the only honeycomb manufactured by bees. However, another variant of a symmetric and periodic double-layer hexagonal honeycomb with two hexagons and two rhombi between the two layers and slightly better wax economy was discovered theoretically in 1964 by Fejes Tóth and found in nature some years later. The present work shows that there is yet another possibility, with the interface formed by one hexagon and two quadrangles, in addition to the trivial case with flat hexagonal cell bottoms and very poor wax economy. Moreover, we demonstrate that the geometry of the Fejes Tóth honeycomb can be optimized for even better wax economy. All the theoretical honeycomb types are derived using the principle of Dirichlet-domain construction and shown to have more and less symmetric variants. Wax economy is calculated for each case, confirming that indeed the modified Fejes Tóth honeycomb is the most efficient, while the trivial flat-bottom case is the least.
期刊介绍:
Acta Crystallographica Section A: Foundations and Advances publishes articles reporting advances in the theory and practice of all areas of crystallography in the broadest sense. As well as traditional crystallography, this includes nanocrystals, metacrystals, amorphous materials, quasicrystals, synchrotron and XFEL studies, coherent scattering, diffraction imaging, time-resolved studies and the structure of strain and defects in materials.
The journal has two parts, a rapid-publication Advances section and the traditional Foundations section. Articles for the Advances section are of particularly high value and impact. They receive expedited treatment and may be highlighted by an accompanying scientific commentary article and a press release. Further details are given in the November 2013 Editorial.
The central themes of the journal are, on the one hand, experimental and theoretical studies of the properties and arrangements of atoms, ions and molecules in condensed matter, periodic, quasiperiodic or amorphous, ideal or real, and, on the other, the theoretical and experimental aspects of the various methods to determine these properties and arrangements.