A Deep-Learning Approach for Vocal Fold Pose Estimation in Videoendoscopy.

Francesca Pia Villani, Maria Chiara Fiorentino, Lorenzo Federici, Cesare Piazza, Emanuele Frontoni, Alberto Paderno, Sara Moccia
{"title":"A Deep-Learning Approach for Vocal Fold Pose Estimation in Videoendoscopy.","authors":"Francesca Pia Villani, Maria Chiara Fiorentino, Lorenzo Federici, Cesare Piazza, Emanuele Frontoni, Alberto Paderno, Sara Moccia","doi":"10.1007/s10278-025-01431-8","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate vocal fold (VF) pose estimation is crucial for diagnosing larynx diseases that can eventually lead to VF paralysis. The videoendoscopic examination is used to assess VF motility, usually estimating the change in the anterior glottic angle (AGA). This is a subjective and time-consuming procedure requiring extensive expertise. This research proposes a deep learning framework to estimate VF pose from laryngoscopy frames acquired in the actual clinical practice. The framework performs heatmap regression relying on three anatomically relevant keypoints as a prior for AGA computation, which is estimated from the coordinates of the predicted points. The assessment of the proposed framework is performed using a newly collected dataset of 471 laryngoscopy frames from 124 patients, 28 of whom with cancer. The framework was tested in various configurations and compared with other state-of-the-art approaches (direct keypoints regression and glottal segmentation) for both pose estimation, and AGA evaluation. The proposed framework obtained the lowest root mean square error (RMSE) computed on all the keypoints (5.09, 6.56, and 6.40 pixels, respectively) among all the models tested for VF pose estimation. Also for the AGA evaluation, heatmap regression reached the lowest mean average error (MAE) ( <math><mrow><mn>5</mn> <mo>.</mo> <msup><mn>87</mn> <mo>∘</mo></msup> </mrow> </math> ). Results show that relying on keypoints heatmap regression allows to perform VF pose estimation with a small error, overcoming drawbacks of state-of-the-art algorithms, especially in challenging images such as pathologic subjects, presence of noise, and occlusion.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01431-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate vocal fold (VF) pose estimation is crucial for diagnosing larynx diseases that can eventually lead to VF paralysis. The videoendoscopic examination is used to assess VF motility, usually estimating the change in the anterior glottic angle (AGA). This is a subjective and time-consuming procedure requiring extensive expertise. This research proposes a deep learning framework to estimate VF pose from laryngoscopy frames acquired in the actual clinical practice. The framework performs heatmap regression relying on three anatomically relevant keypoints as a prior for AGA computation, which is estimated from the coordinates of the predicted points. The assessment of the proposed framework is performed using a newly collected dataset of 471 laryngoscopy frames from 124 patients, 28 of whom with cancer. The framework was tested in various configurations and compared with other state-of-the-art approaches (direct keypoints regression and glottal segmentation) for both pose estimation, and AGA evaluation. The proposed framework obtained the lowest root mean square error (RMSE) computed on all the keypoints (5.09, 6.56, and 6.40 pixels, respectively) among all the models tested for VF pose estimation. Also for the AGA evaluation, heatmap regression reached the lowest mean average error (MAE) ( 5 . 87 ). Results show that relying on keypoints heatmap regression allows to perform VF pose estimation with a small error, overcoming drawbacks of state-of-the-art algorithms, especially in challenging images such as pathologic subjects, presence of noise, and occlusion.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信