3D Wasserstein Generative Adversarial Network with Dense U-Net-Based Discriminator for Preclinical fMRI Denoising.

Sima Soltanpour, Arnold Chang, Dan Madularu, Praveen Kulkarni, Craig Ferris, Chris Joslin
{"title":"3D Wasserstein Generative Adversarial Network with Dense U-Net-Based Discriminator for Preclinical fMRI Denoising.","authors":"Sima Soltanpour, Arnold Chang, Dan Madularu, Praveen Kulkarni, Craig Ferris, Chris Joslin","doi":"10.1007/s10278-025-01434-5","DOIUrl":null,"url":null,"abstract":"<p><p>Functional magnetic resonance imaging (fMRI) is extensively used in clinical and preclinical settings to study brain function; however, fMRI data is inherently noisy due to physiological processes, hardware, and external noise. Denoising is one of the main preprocessing steps in any fMRI analysis pipeline. This process is challenging in preclinical data in comparison to clinical data due to variations in brain geometry, image resolution, and low signal-to-noise ratios. In this paper, we propose a structure-preserved algorithm based on a 3D Wasserstein generative adversarial network with a 3D dense U-net-based discriminator called 3D U-WGAN. We apply a 4D data configuration to effectively denoise temporal and spatial information in analyzing preclinical fMRI data. GAN-based denoising methods often utilize a discriminator to identify significant differences between denoised and noise-free images, focusing on global or local features. To refine the fMRI denoising model, our method employs a 3D dense U-Net discriminator to learn both global and local distinctions. To tackle potential oversmoothing, we introduce an adversarial loss and enhance perceptual similarity by measuring feature space distances. Experiments illustrate that 3D U-WGAN significantly improves image quality in resting-state and task preclinical fMRI data, enhancing signal-to-noise ratio without introducing excessive structural changes in existing methods. The proposed method outperforms state-of-the-art methods when applied to simulated and real data in a fMRI analysis pipeline.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01434-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Functional magnetic resonance imaging (fMRI) is extensively used in clinical and preclinical settings to study brain function; however, fMRI data is inherently noisy due to physiological processes, hardware, and external noise. Denoising is one of the main preprocessing steps in any fMRI analysis pipeline. This process is challenging in preclinical data in comparison to clinical data due to variations in brain geometry, image resolution, and low signal-to-noise ratios. In this paper, we propose a structure-preserved algorithm based on a 3D Wasserstein generative adversarial network with a 3D dense U-net-based discriminator called 3D U-WGAN. We apply a 4D data configuration to effectively denoise temporal and spatial information in analyzing preclinical fMRI data. GAN-based denoising methods often utilize a discriminator to identify significant differences between denoised and noise-free images, focusing on global or local features. To refine the fMRI denoising model, our method employs a 3D dense U-Net discriminator to learn both global and local distinctions. To tackle potential oversmoothing, we introduce an adversarial loss and enhance perceptual similarity by measuring feature space distances. Experiments illustrate that 3D U-WGAN significantly improves image quality in resting-state and task preclinical fMRI data, enhancing signal-to-noise ratio without introducing excessive structural changes in existing methods. The proposed method outperforms state-of-the-art methods when applied to simulated and real data in a fMRI analysis pipeline.

基于密集u - net鉴别器的三维Wasserstein生成对抗网络用于临床前fMRI去噪。
功能磁共振成像(fMRI)广泛应用于临床和临床前研究脑功能;然而,由于生理过程、硬件和外部噪声的影响,fMRI数据本身就存在噪声。去噪是任何fMRI分析流程中的主要预处理步骤之一。与临床数据相比,由于大脑几何形状、图像分辨率和低信噪比的差异,这一过程在临床前数据中具有挑战性。在本文中,我们提出了一种基于三维Wasserstein生成对抗网络的结构保留算法,该算法具有基于三维密集u -net的鉴别器,称为3D U-WGAN。在分析临床前fMRI数据时,我们应用4D数据配置来有效地去噪时间和空间信息。基于gan的去噪方法通常利用鉴别器来识别去噪和无噪图像之间的显著差异,重点关注全局或局部特征。为了改进fMRI去噪模型,我们的方法采用三维密集U-Net鉴别器来学习全局和局部区别。为了解决潜在的过度平滑问题,我们引入了对抗损失,并通过测量特征空间距离来增强感知相似性。实验表明,3D U-WGAN显著提高了静息状态和任务临床前fMRI数据的图像质量,提高了信噪比,而不会对现有方法进行过多的结构改变。当应用于fMRI分析管道中的模拟和真实数据时,所提出的方法优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信