{"title":"GDF11 Mitigates Neuropathic Pain via Regulation of Microglial Polarization and Neuroinflammation through TGF-βR1/SMAD2/NF-κB Pathway in Male Mice.","authors":"Tianzhu Liu, Longqing Zhang","doi":"10.1007/s11481-025-10172-y","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal microglial activation and the polarization towards the M1 phenotype are implicated in the pathological process of neuropathic pain. Extensive research has elucidated that growth and differentiation factor 11 (GDF11), a constituent of the transforming growth factor-β (TGF-β) superfamily, exerts inhibitory effects on macrophage activation and mitigates inflammatory responses via the activation of TGF-β receptor type I (TGF-βR1). Nonetheless, the influence of GDF11 on spinal microglial polarization and its role in neuropathic pain remains to be ascertained. In the present investigation, a neuropathic pain model was induced via a spared nerve injury (SNI) procedure on the sciatic nerve in male mice. The impact of GDF11 on microglial polarization and neuropathic pain in SNI-subjected mice was evaluated through pain behavior assessments, WB, IF, qRT-PCR, and ELISA. Our findings revealed a significant downregulation of spinal GDF11 and TGF-βR1 expression levels in microglia of mice subjected to SNI. Furthermore, GDF11 treatment notably reversed the mechanical allodynia and thermal hyperalgesia, inhibited M1 microglial polarization, and attenuated neuroinflammatory processes by modulating the SMAD2/NF-κB in SNI mice. However, the analgesic effects of GDF11 on pain hypersensitivity and its modulatory influence on spinal microglial polarization were abrogated by the application of a specific antagonist of TGF-βR1, or the TGF-βR1 siRNA. In summary, GDF11 effectively ameliorated mechanical allodynia and thermal hyperalgesia, suppressed M1 microglial polarization, and alleviated neuroinflammation via the regulation of the TGF-βR1/SMAD2/NF-κB pathway in mice with SNI. These findings suggest that GDF11 holds promise as a therapeutic modality for the management of neuropathic pain.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":"20 1","pages":"20"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11481-025-10172-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Spinal microglial activation and the polarization towards the M1 phenotype are implicated in the pathological process of neuropathic pain. Extensive research has elucidated that growth and differentiation factor 11 (GDF11), a constituent of the transforming growth factor-β (TGF-β) superfamily, exerts inhibitory effects on macrophage activation and mitigates inflammatory responses via the activation of TGF-β receptor type I (TGF-βR1). Nonetheless, the influence of GDF11 on spinal microglial polarization and its role in neuropathic pain remains to be ascertained. In the present investigation, a neuropathic pain model was induced via a spared nerve injury (SNI) procedure on the sciatic nerve in male mice. The impact of GDF11 on microglial polarization and neuropathic pain in SNI-subjected mice was evaluated through pain behavior assessments, WB, IF, qRT-PCR, and ELISA. Our findings revealed a significant downregulation of spinal GDF11 and TGF-βR1 expression levels in microglia of mice subjected to SNI. Furthermore, GDF11 treatment notably reversed the mechanical allodynia and thermal hyperalgesia, inhibited M1 microglial polarization, and attenuated neuroinflammatory processes by modulating the SMAD2/NF-κB in SNI mice. However, the analgesic effects of GDF11 on pain hypersensitivity and its modulatory influence on spinal microglial polarization were abrogated by the application of a specific antagonist of TGF-βR1, or the TGF-βR1 siRNA. In summary, GDF11 effectively ameliorated mechanical allodynia and thermal hyperalgesia, suppressed M1 microglial polarization, and alleviated neuroinflammation via the regulation of the TGF-βR1/SMAD2/NF-κB pathway in mice with SNI. These findings suggest that GDF11 holds promise as a therapeutic modality for the management of neuropathic pain.