End-to-end 3D instance segmentation of synthetic data and embryo microscopy images with a 3D Mask R-CNN.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Frontiers in bioinformatics Pub Date : 2025-01-29 eCollection Date: 2024-01-01 DOI:10.3389/fbinf.2024.1497539
Gabriel David, Emmanuel Faure
{"title":"End-to-end 3D instance segmentation of synthetic data and embryo microscopy images with a 3D Mask R-CNN.","authors":"Gabriel David, Emmanuel Faure","doi":"10.3389/fbinf.2024.1497539","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the exploitation of three-dimensional (3D) data in deep learning has gained momentum despite its inherent challenges. The necessity of 3D approaches arises from the limitations of two-dimensional (2D) techniques when applied to 3D data due to the lack of global context. A critical task in medical and microscopy 3D image analysis is instance segmentation, which is inherently complex due to the need for accurately identifying and segmenting multiple object instances in an image. Here, we introduce a 3D adaptation of the Mask R-CNN, a powerful end-to-end network designed for instance segmentation. Our implementation adapts a widely used 2D TensorFlow Mask R-CNN by developing custom TensorFlow operations for 3D Non-Max Suppression and 3D Crop And Resize, facilitating efficient training and inference on 3D data. We validate our 3D Mask R-CNN on two experiences. The first experience uses a controlled environment of synthetic data with instances exhibiting a wide range of anisotropy and noise. Our model achieves good results while illustrating the limit of the 3D Mask R-CNN for the noisiest objects. Second, applying it to real-world data involving cell instance segmentation during the morphogenesis of the ascidian embryo <i>Phallusia mammillata</i>, we show that our 3D Mask R-CNN outperforms the state-of-the-art method, achieving high recall and precision scores. The model preserves cell connectivity, which is crucial for applications in quantitative study. Our implementation is open source, ensuring reproducibility and facilitating further research in 3D deep learning.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"4 ","pages":"1497539"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814465/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbinf.2024.1497539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the exploitation of three-dimensional (3D) data in deep learning has gained momentum despite its inherent challenges. The necessity of 3D approaches arises from the limitations of two-dimensional (2D) techniques when applied to 3D data due to the lack of global context. A critical task in medical and microscopy 3D image analysis is instance segmentation, which is inherently complex due to the need for accurately identifying and segmenting multiple object instances in an image. Here, we introduce a 3D adaptation of the Mask R-CNN, a powerful end-to-end network designed for instance segmentation. Our implementation adapts a widely used 2D TensorFlow Mask R-CNN by developing custom TensorFlow operations for 3D Non-Max Suppression and 3D Crop And Resize, facilitating efficient training and inference on 3D data. We validate our 3D Mask R-CNN on two experiences. The first experience uses a controlled environment of synthetic data with instances exhibiting a wide range of anisotropy and noise. Our model achieves good results while illustrating the limit of the 3D Mask R-CNN for the noisiest objects. Second, applying it to real-world data involving cell instance segmentation during the morphogenesis of the ascidian embryo Phallusia mammillata, we show that our 3D Mask R-CNN outperforms the state-of-the-art method, achieving high recall and precision scores. The model preserves cell connectivity, which is crucial for applications in quantitative study. Our implementation is open source, ensuring reproducibility and facilitating further research in 3D deep learning.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信