Spalding Garakani, Luis Flores, Guillermo Alvarez-Pardo, Jan Rychtář, Dewey Taylor
{"title":"The effect of heterogeneity of relative vaccine costs on the mean population vaccination rate with mpox as an example.","authors":"Spalding Garakani, Luis Flores, Guillermo Alvarez-Pardo, Jan Rychtář, Dewey Taylor","doi":"10.1016/j.jtbi.2025.112062","DOIUrl":null,"url":null,"abstract":"<p><p>Mpox (formerly known as monkeypox) is a neglected tropical disease that became notorious during its 2022-2023 worldwide outbreak. The vaccination was available, but there were inequities in vaccine access. In this paper, we extend existing game-theoretic models to study a population that is heterogeneous in the relative vaccination costs. We consider a population with two groups. We determine the Nash equilibria (NE), i.e., optimal vaccination rates, for each of the groups. We show that the NE always exists and that, for a narrow range of parameter values, there can be multiple NEs. We mainly focus on comparing the mean optimal vaccination rate in the heterogeneous population with the optimal vaccination rate in the corresponding homogeneous population. We show that there is a critical size for the group with lower relative costs and the mean optimal vaccination in the heterogeneous population is more than in the homogeneous population if and only if the group is larger than the critical size.</p>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":" ","pages":"112062"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jtbi.2025.112062","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mpox (formerly known as monkeypox) is a neglected tropical disease that became notorious during its 2022-2023 worldwide outbreak. The vaccination was available, but there were inequities in vaccine access. In this paper, we extend existing game-theoretic models to study a population that is heterogeneous in the relative vaccination costs. We consider a population with two groups. We determine the Nash equilibria (NE), i.e., optimal vaccination rates, for each of the groups. We show that the NE always exists and that, for a narrow range of parameter values, there can be multiple NEs. We mainly focus on comparing the mean optimal vaccination rate in the heterogeneous population with the optimal vaccination rate in the corresponding homogeneous population. We show that there is a critical size for the group with lower relative costs and the mean optimal vaccination in the heterogeneous population is more than in the homogeneous population if and only if the group is larger than the critical size.
期刊介绍:
The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including:
• Brain and Neuroscience
• Cancer Growth and Treatment
• Cell Biology
• Developmental Biology
• Ecology
• Evolution
• Immunology,
• Infectious and non-infectious Diseases,
• Mathematical, Computational, Biophysical and Statistical Modeling
• Microbiology, Molecular Biology, and Biochemistry
• Networks and Complex Systems
• Physiology
• Pharmacodynamics
• Animal Behavior and Game Theory
Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.