Improved segmentation of hepatic vascular networks in ultrasound volumes using 3D U-Net with intensity transformation-based data augmentation.

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yukino Takahashi, Takaaki Sugino, Shinya Onogi, Yoshikazu Nakajima, Kohji Masuda
{"title":"Improved segmentation of hepatic vascular networks in ultrasound volumes using 3D U-Net with intensity transformation-based data augmentation.","authors":"Yukino Takahashi, Takaaki Sugino, Shinya Onogi, Yoshikazu Nakajima, Kohji Masuda","doi":"10.1007/s11517-025-03320-2","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate three-dimensional (3D) segmentation of hepatic vascular networks is crucial for supporting ultrasound-mediated theranostics for liver diseases. Despite advancements in deep learning techniques, accurate segmentation remains challenging due to ultrasound image quality issues, including intensity and contrast fluctuations. This study introduces intensity transformation-based data augmentation methods to improve deep convolutional neural network-based segmentation of hepatic vascular networks. We employed a 3D U-Net, which leverages spatial contextual information, as the baseline. To address intensity and contrast fluctuations and improve 3D U-Net performance, we implemented data augmentation using high-contrast intensity transformation with S-shaped tone curves and low-contrast intensity transformation with Gamma and inverse S-shaped tone curves. We conducted validation experiments on 78 ultrasound volumes to evaluate the effect of both geometric and intensity transformation-based data augmentations. We found that high-contrast intensity transformation-based data augmentation decreased segmentation accuracy, while low-contrast intensity transformation-based data augmentation significantly improved Recall and Dice. Additionally, combining geometric and low-contrast intensity transformation-based data augmentations, through an OR operation on their results, further enhanced segmentation accuracy, achieving improvements of 9.7% in Recall and 3.3% in Dice. This study demonstrated the effectiveness of low-contrast intensity transformation-based data augmentation in improving volumetric segmentation of hepatic vascular networks from ultrasound volumes.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03320-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate three-dimensional (3D) segmentation of hepatic vascular networks is crucial for supporting ultrasound-mediated theranostics for liver diseases. Despite advancements in deep learning techniques, accurate segmentation remains challenging due to ultrasound image quality issues, including intensity and contrast fluctuations. This study introduces intensity transformation-based data augmentation methods to improve deep convolutional neural network-based segmentation of hepatic vascular networks. We employed a 3D U-Net, which leverages spatial contextual information, as the baseline. To address intensity and contrast fluctuations and improve 3D U-Net performance, we implemented data augmentation using high-contrast intensity transformation with S-shaped tone curves and low-contrast intensity transformation with Gamma and inverse S-shaped tone curves. We conducted validation experiments on 78 ultrasound volumes to evaluate the effect of both geometric and intensity transformation-based data augmentations. We found that high-contrast intensity transformation-based data augmentation decreased segmentation accuracy, while low-contrast intensity transformation-based data augmentation significantly improved Recall and Dice. Additionally, combining geometric and low-contrast intensity transformation-based data augmentations, through an OR operation on their results, further enhanced segmentation accuracy, achieving improvements of 9.7% in Recall and 3.3% in Dice. This study demonstrated the effectiveness of low-contrast intensity transformation-based data augmentation in improving volumetric segmentation of hepatic vascular networks from ultrasound volumes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信