Role of CYLD in brain physiology and pathology.

IF 4.8 3区 医学 Q1 GENETICS & HEREDITY
Journal of Molecular Medicine-Jmm Pub Date : 2025-03-01 Epub Date: 2025-02-13 DOI:10.1007/s00109-025-02521-4
Leonardo Nardi, Frank Bicker, Jannik Maier, Ari Waisman, Michael J Schmeisser
{"title":"Role of CYLD in brain physiology and pathology.","authors":"Leonardo Nardi, Frank Bicker, Jannik Maier, Ari Waisman, Michael J Schmeisser","doi":"10.1007/s00109-025-02521-4","DOIUrl":null,"url":null,"abstract":"<p><p>A common hallmark of several neuropsychiatric conditions is an altered protein homeostasis. In this context, ubiquitination has emerged as one of the most important post-translational modifications, regulating various intracellular processes such as protein degradation, autophagy, protein activation, and protein-protein interactions. Ubiquitination can be reversed by the activity of several deubiquitinating enzymes (DUBs), and it is of utmost importance that both processes remain in balance. Understanding the extent to which this system is involved in specific brain disorders opens up new possibilities for treating a broader spectrum of patients by targeting this central hub. In recent years, the attention to one of those DUBs, called CYLD, has increased sharply, but with relatively little focus on the central nervous system (CNS): 55 results for \"CYLD Brain\" vs. 895 results for \"CYLD\" in total (NCBI Pubmed search, 17.01.2025). Thus, we aim to provide a first overview of the new findings from the past decade specifically related to the role of CYLD in the physiology and pathology of the CNS.</p>","PeriodicalId":50127,"journal":{"name":"Journal of Molecular Medicine-Jmm","volume":" ","pages":"255-263"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880164/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Medicine-Jmm","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00109-025-02521-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

A common hallmark of several neuropsychiatric conditions is an altered protein homeostasis. In this context, ubiquitination has emerged as one of the most important post-translational modifications, regulating various intracellular processes such as protein degradation, autophagy, protein activation, and protein-protein interactions. Ubiquitination can be reversed by the activity of several deubiquitinating enzymes (DUBs), and it is of utmost importance that both processes remain in balance. Understanding the extent to which this system is involved in specific brain disorders opens up new possibilities for treating a broader spectrum of patients by targeting this central hub. In recent years, the attention to one of those DUBs, called CYLD, has increased sharply, but with relatively little focus on the central nervous system (CNS): 55 results for "CYLD Brain" vs. 895 results for "CYLD" in total (NCBI Pubmed search, 17.01.2025). Thus, we aim to provide a first overview of the new findings from the past decade specifically related to the role of CYLD in the physiology and pathology of the CNS.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Medicine-Jmm
Journal of Molecular Medicine-Jmm 医学-医学:研究与实验
CiteScore
9.30
自引率
0.00%
发文量
100
审稿时长
1.3 months
期刊介绍: The Journal of Molecular Medicine publishes original research articles and review articles that range from basic findings in mechanisms of disease pathogenesis to therapy. The focus includes all human diseases, including but not limited to: Aging, angiogenesis, autoimmune diseases as well as other inflammatory diseases, cancer, cardiovascular diseases, development and differentiation, endocrinology, gastrointestinal diseases and hepatology, genetics and epigenetics, hematology, hypoxia research, immunology, infectious diseases, metabolic disorders, neuroscience of diseases, -omics based disease research, regenerative medicine, and stem cell research. Studies solely based on cell lines will not be considered. Studies that are based on model organisms will be considered as long as they are directly relevant to human disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信