Frontiers in integrative structural modeling of macromolecular assemblies.

Q3 Biochemistry, Genetics and Molecular Biology
QRB Discovery Pub Date : 2025-01-22 eCollection Date: 2025-01-01 DOI:10.1017/qrd.2024.15
Kartik Majila, Shreyas Arvindekar, Muskaan Jindal, Shruthi Viswanath
{"title":"Frontiers in integrative structural modeling of macromolecular assemblies.","authors":"Kartik Majila, Shreyas Arvindekar, Muskaan Jindal, Shruthi Viswanath","doi":"10.1017/qrd.2024.15","DOIUrl":null,"url":null,"abstract":"<p><p>Integrative modeling enables structure determination for large macromolecular assemblies by combining data from multiple experiments with theoretical and computational predictions. Recent advancements in AI-based structure prediction and cryo electron-microscopy have sparked renewed enthusiasm for integrative modeling; structures from AI-based methods can be integrated with <i>in situ</i> maps to characterize large assemblies. This approach previously allowed us and others to determine the architectures of diverse macromolecular assemblies, such as nuclear pore complexes, chromatin remodelers, and cell-cell junctions. Experimental data spanning several scales was used in these studies, ranging from high-resolution data, such as X-ray crystallography and AlphaFold structure, to low-resolution data, such as cryo-electron tomography maps and data from co-immunoprecipitation experiments. Two recurrent modeling challenges emerged across a range of studies. First, these assemblies contained significant fractions of disordered regions, necessitating the development of new methods for modeling disordered regions in the context of ordered regions. Second, methods needed to be developed to utilize the information from cryo-electron tomography, a timely challenge as structural biology is increasingly moving towards <i>in situ</i> characterization. Here, we recapitulate recent developments in the modeling of disordered proteins and the analysis of cryo-electron tomography data and highlight other opportunities for method development in the context of integrative modeling.</p>","PeriodicalId":34636,"journal":{"name":"QRB Discovery","volume":"6 ","pages":"e3"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811862/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"QRB Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/qrd.2024.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Integrative modeling enables structure determination for large macromolecular assemblies by combining data from multiple experiments with theoretical and computational predictions. Recent advancements in AI-based structure prediction and cryo electron-microscopy have sparked renewed enthusiasm for integrative modeling; structures from AI-based methods can be integrated with in situ maps to characterize large assemblies. This approach previously allowed us and others to determine the architectures of diverse macromolecular assemblies, such as nuclear pore complexes, chromatin remodelers, and cell-cell junctions. Experimental data spanning several scales was used in these studies, ranging from high-resolution data, such as X-ray crystallography and AlphaFold structure, to low-resolution data, such as cryo-electron tomography maps and data from co-immunoprecipitation experiments. Two recurrent modeling challenges emerged across a range of studies. First, these assemblies contained significant fractions of disordered regions, necessitating the development of new methods for modeling disordered regions in the context of ordered regions. Second, methods needed to be developed to utilize the information from cryo-electron tomography, a timely challenge as structural biology is increasingly moving towards in situ characterization. Here, we recapitulate recent developments in the modeling of disordered proteins and the analysis of cryo-electron tomography data and highlight other opportunities for method development in the context of integrative modeling.

求助全文
约1分钟内获得全文 求助全文
来源期刊
QRB Discovery
QRB Discovery Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
3.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信