Root cap border cells as regulators of rhizosphere microbiota.

IF 0.9 Q3 AGRICULTURE, MULTIDISCIPLINARY
N A Omelyanchuk, V A Cherenko, E V Zemlyanskaya
{"title":"Root cap border cells as regulators of rhizosphere microbiota.","authors":"N A Omelyanchuk, V A Cherenko, E V Zemlyanskaya","doi":"10.18699/vjgb-24-99","DOIUrl":null,"url":null,"abstract":"<p><p>A rhizosphere (a narrow area of soil around plant roots) is an ecological niche, within which beneficial microorganisms and pathogens compete with each other for organic carbon compounds and for the opportunity to colonize roots. The roots secrete rhizodeposits into the rhizosphere, which include border cells, products of root cell death and liquids secreted by living cells (root exudates). Border cells, which have their name due to their location in the soil next to the root (at the border of the root and soil), represent terminal differentiation of columella and adjacent lateral root cap cells. Border cells can detach from the root cap surface both as single cells and as cell layers. Border cells are constantly supplied to the soil throughout plant life, and the type and intensity of border cells' sloughing depend on both plant species and soil conditions. Currently, data on the factors that control the type of border cells' release and its regulation have been described in different plant species. Border cells are specialized for interaction with the environment, in particular, they are a living barrier between soil microbiota and roots. After separation of border cells from the root tip, transcription of primary metabolism genes decreases, whereas transcription of secondary metabolism genes as well as the synthesis and secretion of mucilage containing these metabolites along with extracellular DNA, proteoglycans and other substances increase. The mucilage that the border cells are embedded in serves both to attract microorganisms promoting plant growth and to protect plants from pathogens. In this review, we describe interactions of border cells with various types of microorganisms and demonstrate their importance for plant growth and disease resistance.</p>","PeriodicalId":44339,"journal":{"name":"Vavilovskii Zhurnal Genetiki i Selektsii","volume":"28 8","pages":"918-926"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811504/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vavilovskii Zhurnal Genetiki i Selektsii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18699/vjgb-24-99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A rhizosphere (a narrow area of soil around plant roots) is an ecological niche, within which beneficial microorganisms and pathogens compete with each other for organic carbon compounds and for the opportunity to colonize roots. The roots secrete rhizodeposits into the rhizosphere, which include border cells, products of root cell death and liquids secreted by living cells (root exudates). Border cells, which have their name due to their location in the soil next to the root (at the border of the root and soil), represent terminal differentiation of columella and adjacent lateral root cap cells. Border cells can detach from the root cap surface both as single cells and as cell layers. Border cells are constantly supplied to the soil throughout plant life, and the type and intensity of border cells' sloughing depend on both plant species and soil conditions. Currently, data on the factors that control the type of border cells' release and its regulation have been described in different plant species. Border cells are specialized for interaction with the environment, in particular, they are a living barrier between soil microbiota and roots. After separation of border cells from the root tip, transcription of primary metabolism genes decreases, whereas transcription of secondary metabolism genes as well as the synthesis and secretion of mucilage containing these metabolites along with extracellular DNA, proteoglycans and other substances increase. The mucilage that the border cells are embedded in serves both to attract microorganisms promoting plant growth and to protect plants from pathogens. In this review, we describe interactions of border cells with various types of microorganisms and demonstrate their importance for plant growth and disease resistance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Vavilovskii Zhurnal Genetiki i Selektsii
Vavilovskii Zhurnal Genetiki i Selektsii AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
1.90
自引率
0.00%
发文量
119
审稿时长
8 weeks
期刊介绍: The "Vavilov Journal of genetics and breeding" publishes original research and review articles in all key areas of modern plant, animal and human genetics, genomics, bioinformatics and biotechnology. One of the main objectives of the journal is integration of theoretical and applied research in the field of genetics. Special attention is paid to the most topical areas in modern genetics dealing with global concerns such as food security and human health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信