GlucoGenes®, a database of genes and proteins associated with glucose metabolism disorders, its description and applications in bioinformatics research.

IF 1 Q3 AGRICULTURE, MULTIDISCIPLINARY
V V Klimontov, K S Shishin, R A Ivanov, M P Ponomarenko, K A Zolotareva, S A Lashin
{"title":"GlucoGenes®, a database of genes and proteins associated with glucose metabolism disorders, its description and applications in bioinformatics research.","authors":"V V Klimontov, K S Shishin, R A Ivanov, M P Ponomarenko, K A Zolotareva, S A Lashin","doi":"10.18699/vjgb-24-107","DOIUrl":null,"url":null,"abstract":"<p><p>Data on the genetics and molecular biology of diabetes are accumulating rapidly. This poses the challenge of creating research tools for a rapid search for, structuring and analysis of information in this field. We have developed a web resource, GlucoGenes®, which includes a database and an Internet portal of genes and proteins associated with high glucose (hyperglycemia), low glucose (hypoglycemia), and both metabolic disorders. The data were collected using text mining of the publications indexed in PubMed and PubMed Central and analysis of gene networks associated with hyperglycemia, hypoglycemia and glucose variability performed with ANDSystems, a bioinformatics tool. GlucoGenes® is freely available at: https://glucogenes.sysbio.ru/genes/main. GlucoGenes® enables users to access and download information about genes and proteins associated with the risk of hyperglycemia and hypoglycemia, molecular regulators with hyperglycemic and antihyperglycemic activity, genes up-regulated by high glucose and/or low glucose, genes down-regulated by high glucose and/or low glucose, and molecules otherwise associated with the glucose metabolism disorders. With GlucoGenes®, an evolutionary analysis of genes associated with glucose metabolism disorders was performed. The results of the analysis revealed a significant increase (up to 40 %) in the proportion of genes with phylostratigraphic age index (PAI) values corresponding to the time of origin of multicellular organisms. Analysis of sequence conservation using the divergence index (DI) showed that most of the corresponding genes are highly conserved (DI < 0.6) or conservative (DI < 1). When analyzing single nucleotide polymorphism (SNP) in the proximal regions of promoters affecting the affinity of the TATA-binding protein, 181 SNP markers were found in the GlucoGenes® database, which can reduce (45 SNP markers) or increase (136 SNP markers) the expression of 52 genes. We believe that this resource will be a useful tool for further research in the field of molecular biology of diabetes.</p>","PeriodicalId":44339,"journal":{"name":"Vavilovskii Zhurnal Genetiki i Selektsii","volume":"28 8","pages":"1008-1017"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811496/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vavilovskii Zhurnal Genetiki i Selektsii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18699/vjgb-24-107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Data on the genetics and molecular biology of diabetes are accumulating rapidly. This poses the challenge of creating research tools for a rapid search for, structuring and analysis of information in this field. We have developed a web resource, GlucoGenes®, which includes a database and an Internet portal of genes and proteins associated with high glucose (hyperglycemia), low glucose (hypoglycemia), and both metabolic disorders. The data were collected using text mining of the publications indexed in PubMed and PubMed Central and analysis of gene networks associated with hyperglycemia, hypoglycemia and glucose variability performed with ANDSystems, a bioinformatics tool. GlucoGenes® is freely available at: https://glucogenes.sysbio.ru/genes/main. GlucoGenes® enables users to access and download information about genes and proteins associated with the risk of hyperglycemia and hypoglycemia, molecular regulators with hyperglycemic and antihyperglycemic activity, genes up-regulated by high glucose and/or low glucose, genes down-regulated by high glucose and/or low glucose, and molecules otherwise associated with the glucose metabolism disorders. With GlucoGenes®, an evolutionary analysis of genes associated with glucose metabolism disorders was performed. The results of the analysis revealed a significant increase (up to 40 %) in the proportion of genes with phylostratigraphic age index (PAI) values corresponding to the time of origin of multicellular organisms. Analysis of sequence conservation using the divergence index (DI) showed that most of the corresponding genes are highly conserved (DI < 0.6) or conservative (DI < 1). When analyzing single nucleotide polymorphism (SNP) in the proximal regions of promoters affecting the affinity of the TATA-binding protein, 181 SNP markers were found in the GlucoGenes® database, which can reduce (45 SNP markers) or increase (136 SNP markers) the expression of 52 genes. We believe that this resource will be a useful tool for further research in the field of molecular biology of diabetes.

Abstract Image

Abstract Image

Abstract Image

GlucoGenes®是一个与糖代谢紊乱相关的基因和蛋白质数据库,它的描述和在生物信息学研究中的应用。
糖尿病的遗传学和分子生物学数据正在迅速积累。这就提出了为快速搜索、组织和分析这一领域的信息而创建研究工具的挑战。我们已经开发了一个网络资源,GlucoGenes®,其中包括一个数据库和一个与高血糖(高血糖)、低血糖(低血糖)和两种代谢紊乱相关的基因和蛋白质的互联网门户。数据收集使用PubMed和PubMed Central检索的出版物的文本挖掘,并使用生物信息学工具ANDSystems对与高血糖、低血糖和葡萄糖变异性相关的基因网络进行分析。GlucoGenes®免费下载网址:https://glucogenes.sysbio.ru/genes/main。GlucoGenes®使用户能够访问和下载与高血糖和低血糖风险相关的基因和蛋白质,具有高血糖和抗高血糖活性的分子调节因子,高糖和/或低糖上调的基因,高糖和/或低糖下调的基因,以及与糖代谢紊乱相关的分子的信息。使用GlucoGenes®,对与糖代谢紊乱相关的基因进行了进化分析。分析结果显示,与多细胞生物起源时间相对应的系统地层年龄指数(PAI)值的基因比例显著增加(高达40%)。利用差异指数(DI)进行序列保守性分析,结果显示大部分对应基因为高度保守(DI < 0.6)或保守(DI < 1)。在对影响tata结合蛋白亲和力的启动子近端区域进行单核苷酸多态性(SNP)分析时,在GlucoGenes®数据库中发现181个SNP标记,这些SNP标记可以降低(45个)或增加(136个)52个基因的表达。我们相信这一资源将为糖尿病分子生物学领域的进一步研究提供一个有用的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Vavilovskii Zhurnal Genetiki i Selektsii
Vavilovskii Zhurnal Genetiki i Selektsii AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
1.90
自引率
0.00%
发文量
119
审稿时长
8 weeks
期刊介绍: The "Vavilov Journal of genetics and breeding" publishes original research and review articles in all key areas of modern plant, animal and human genetics, genomics, bioinformatics and biotechnology. One of the main objectives of the journal is integration of theoretical and applied research in the field of genetics. Special attention is paid to the most topical areas in modern genetics dealing with global concerns such as food security and human health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信