On the Isoperimetric and Isodiametric Inequalities and the Minimisation of Eigenvalues of the Laplacian.

IF 1.2 2区 数学 Q1 MATHEMATICS
Journal of Geometric Analysis Pub Date : 2025-01-01 Epub Date: 2025-01-04 DOI:10.1007/s12220-024-01887-0
Sam Farrington
{"title":"On the Isoperimetric and Isodiametric Inequalities and the Minimisation of Eigenvalues of the Laplacian.","authors":"Sam Farrington","doi":"10.1007/s12220-024-01887-0","DOIUrl":null,"url":null,"abstract":"<p><p>We consider the problem of minimising the <i>k</i>-th eigenvalue of the Laplacian with some prescribed boundary condition over collections of convex domains of prescribed perimeter or diameter. It is known that these minimisation problems are well-posed for Dirichlet eigenvalues in any dimension <math><mrow><mi>d</mi> <mo>≥</mo> <mn>2</mn></mrow> </math> and any sequence of minimisers converges to the ball of unit perimeter or diameter respectively as <math><mrow><mi>k</mi> <mo>→</mo> <mo>+</mo> <mi>∞</mi></mrow> </math> . In this paper, we show that the same is true in the case of Neumann eigenvalues under diameter constraint in any dimension and under perimeter constraint in dimension <math><mrow><mi>d</mi> <mo>=</mo> <mn>2</mn></mrow> </math> . We also consider these problems for Robin eigenvalues and mixed Dirichlet-Neumann eigenvalues, under an additional geometric constraint.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"35 2","pages":"62"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811466/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-024-01887-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of minimising the k-th eigenvalue of the Laplacian with some prescribed boundary condition over collections of convex domains of prescribed perimeter or diameter. It is known that these minimisation problems are well-posed for Dirichlet eigenvalues in any dimension d 2 and any sequence of minimisers converges to the ball of unit perimeter or diameter respectively as k + . In this paper, we show that the same is true in the case of Neumann eigenvalues under diameter constraint in any dimension and under perimeter constraint in dimension d = 2 . We also consider these problems for Robin eigenvalues and mixed Dirichlet-Neumann eigenvalues, under an additional geometric constraint.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
9.10%
发文量
290
审稿时长
3 months
期刊介绍: JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信