Mitigation of Radiation-induced Acute Hematopoietic System and Intestine Injury by Resveratrol-loaded Polymeric Nanoparticles after Whole Body Irradiation in Mice.

IF 1.2 4区 医学 Q3 PHARMACOLOGY & PHARMACY
Mohammad Mohammadi, Amir Kiani, Faranak Aghaz, Elham Arkan, Khodabakhsh Rashidi, Masoud Najafi
{"title":"Mitigation of Radiation-induced Acute Hematopoietic System and Intestine Injury by Resveratrol-loaded Polymeric Nanoparticles after Whole Body Irradiation in Mice.","authors":"Mohammad Mohammadi, Amir Kiani, Faranak Aghaz, Elham Arkan, Khodabakhsh Rashidi, Masoud Najafi","doi":"10.2174/0118744710335266250206060602","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Radiation-induced damage to the hematopoietic and gastrointestinal systems, especially the intestine, is a major concern for individuals exposed to whole-body radiation during an accident. Resveratrol has shown potential in mitigating radiation-induced toxicity, but its efficacy may be limited by its low bioavailability. In this study, we aimed to evaluate the effectiveness of resveratrol-loaded polymeric-based nanocapsules in mitigating radiation-induced injury in the hematopoietic system and intestine after whole-body exposure to radiation.</p><p><strong>Methods: </strong>Sixty male mice were randomly divided into four groups: control, radiation (single dose of 7.2 Gy of X-ray) only, resveratrol-loaded polymeric-based nanocapsules (RES-ACN) only, and radiation plus RES-ACN. Mice were exposed to a single dose of 7.2 Gy of X-ray radiation. RES-ACN was administered to the mice starting 24 h after irradiation up to day 7 post-irradiation. Then, blood and tissue samples were collected for complete blood count and histopathological and biochemical evaluation. Survival analyses were also conducted.</p><p><strong>Results: </strong>The findings showed that RES-ACN significantly mitigated radiation-induced injury to the hematopoietic system and intestine. The histopathological evaluation showed the mitigation of villi shortening, inflammation, and mucous layer thickness following treatment with RES-ACN. Biochemical evaluation also demonstrated a significant increase in the activity of glutathione peroxidase and superoxide dismutase and a significant reduction in the concentrations of malondialdehyde and nitric oxide. Treatment with RES-ACN also showed a significant improvement in some of the blood parameters and increased survival compared to radiation only.</p><p><strong>Conclusion: </strong>The findings suggest that resveratrol-loaded polymeric-based nanocapsules can be an effective approach to mitigate radiation-induced damage to the hematopoietic system and intestine after whole-body exposure to X-ray radiation in mice. Further research is needed to explore the optimal dose and timing of resveratrol administration and to investigate the potential for clinical translation of this approach.</p>","PeriodicalId":10991,"journal":{"name":"Current radiopharmaceuticals","volume":" ","pages":"182-200"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current radiopharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118744710335266250206060602","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Radiation-induced damage to the hematopoietic and gastrointestinal systems, especially the intestine, is a major concern for individuals exposed to whole-body radiation during an accident. Resveratrol has shown potential in mitigating radiation-induced toxicity, but its efficacy may be limited by its low bioavailability. In this study, we aimed to evaluate the effectiveness of resveratrol-loaded polymeric-based nanocapsules in mitigating radiation-induced injury in the hematopoietic system and intestine after whole-body exposure to radiation.

Methods: Sixty male mice were randomly divided into four groups: control, radiation (single dose of 7.2 Gy of X-ray) only, resveratrol-loaded polymeric-based nanocapsules (RES-ACN) only, and radiation plus RES-ACN. Mice were exposed to a single dose of 7.2 Gy of X-ray radiation. RES-ACN was administered to the mice starting 24 h after irradiation up to day 7 post-irradiation. Then, blood and tissue samples were collected for complete blood count and histopathological and biochemical evaluation. Survival analyses were also conducted.

Results: The findings showed that RES-ACN significantly mitigated radiation-induced injury to the hematopoietic system and intestine. The histopathological evaluation showed the mitigation of villi shortening, inflammation, and mucous layer thickness following treatment with RES-ACN. Biochemical evaluation also demonstrated a significant increase in the activity of glutathione peroxidase and superoxide dismutase and a significant reduction in the concentrations of malondialdehyde and nitric oxide. Treatment with RES-ACN also showed a significant improvement in some of the blood parameters and increased survival compared to radiation only.

Conclusion: The findings suggest that resveratrol-loaded polymeric-based nanocapsules can be an effective approach to mitigate radiation-induced damage to the hematopoietic system and intestine after whole-body exposure to X-ray radiation in mice. Further research is needed to explore the optimal dose and timing of resveratrol administration and to investigate the potential for clinical translation of this approach.

白藜芦醇负载聚合纳米颗粒减轻全身照射后小鼠急性造血系统和肠道损伤
背景:辐射引起的造血和胃肠道系统损伤,特别是肠道损伤,是事故中暴露于全身辐射的个体的主要问题。白藜芦醇已显示出减轻辐射毒性的潜力,但其生物利用度低可能限制了其功效。在这项研究中,我们旨在评估白藜芦醇负载聚合物纳米胶囊在全身暴露于辐射后减轻造血系统和肠道辐射损伤的有效性。方法:雄性小鼠60只,随机分为对照组、单次给药7.2 Gy x射线组、单次给药白藜芦醇聚合物基纳米胶囊(RES-ACN)组和辐射加RES-ACN组。小鼠接受单剂量7.2 Gy的x射线辐射。从照射后24小时开始至照射后第7天给予小鼠RES-ACN。然后采集血液和组织标本进行全血细胞计数、组织病理学和生化评价。还进行了生存分析。结果:RES-ACN能显著减轻辐射对造血系统和肠道的损伤。组织病理学评估显示,RES-ACN治疗后绒毛缩短,炎症和粘膜层厚度减轻。生化评价也显示谷胱甘肽过氧化物酶和超氧化物歧化酶活性显著增加,丙二醛和一氧化氮浓度显著降低。与单纯放疗相比,RES-ACN治疗也显示出某些血液参数的显著改善和生存率的提高。结论:白藜芦醇负载聚合物纳米胶囊可有效减轻全身x射线照射后小鼠造血系统和肠道的损伤。需要进一步的研究来探索白藜芦醇给药的最佳剂量和时间,并调查该方法的临床转化潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current radiopharmaceuticals
Current radiopharmaceuticals PHARMACOLOGY & PHARMACY-
CiteScore
3.20
自引率
4.30%
发文量
43
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信