Analysis of microarray and single-cell RNA-seq identifies gene co-expression, cell-cell communication, and tumor environment associated with metabolite interconversion enzyme in prostate cancer.

IF 2.8 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM
Danial Hashemi Karoii, Ali Shakeri Abroudi, Nadia Forghani, Sobhan Bavandi, Melika Djamali, Hamoon Baghaei, Sana Shafaeitilaki, Ehsan HasanZadeh
{"title":"Analysis of microarray and single-cell RNA-seq identifies gene co-expression, cell-cell communication, and tumor environment associated with metabolite interconversion enzyme in prostate cancer.","authors":"Danial Hashemi Karoii, Ali Shakeri Abroudi, Nadia Forghani, Sobhan Bavandi, Melika Djamali, Hamoon Baghaei, Sana Shafaeitilaki, Ehsan HasanZadeh","doi":"10.1007/s12672-025-01926-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Prostate cancer (PCa) is the second most common malignant neoplasm in males and is the fifth leading cause of cancer-related mortality. Due to the use of prostate-specific antigen (PSA) screening and improved biopsy techniques, persons identified with early-stage prostate cancer often have a positive prognosis after comprehensive treatment. Nonetheless, prostate cancer is a latent illness that may present as an asymptomatic tumor in individuals aged 20-30. The overall survival (OS) of men with advanced PCa is significantly diminished. Consequently, there is an immediate want for innovative, accurate biomarkers to detect early prostate cancer.</p><p><strong>Methods: </strong>This research analyzed the interaction network of differentially expressed genes (DEGs) related to metabolite interconversion enzymes in PCa by gene expression microarray data, single-cell RNA sequencing, oncogenes, and tumor suppressor genes (TSGs) utilizing bioinformatics techniques. This kind of analysis has not been documented in prior studies.</p><p><strong>Results: </strong>We then used a dataset acquired by the Cancer Genome Atlas (TCGA) to confirm our findings. Genes including CYP3A5, PDE8B, AOX1, BNIPL, FADS2, RRM2, ALDH3B2, and GSTM2 may be significant in the diagnosis and treatment of PCa.</p><p><strong>Conclusion: </strong>Our objective was to provide new perspectives on the molecular properties and pathways of DEGs in PCa and to uncover potential biomarkers that play a crucial role in the genesis and progression of PCa.</p>","PeriodicalId":11148,"journal":{"name":"Discover. Oncology","volume":"16 1","pages":"177"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover. Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12672-025-01926-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Prostate cancer (PCa) is the second most common malignant neoplasm in males and is the fifth leading cause of cancer-related mortality. Due to the use of prostate-specific antigen (PSA) screening and improved biopsy techniques, persons identified with early-stage prostate cancer often have a positive prognosis after comprehensive treatment. Nonetheless, prostate cancer is a latent illness that may present as an asymptomatic tumor in individuals aged 20-30. The overall survival (OS) of men with advanced PCa is significantly diminished. Consequently, there is an immediate want for innovative, accurate biomarkers to detect early prostate cancer.

Methods: This research analyzed the interaction network of differentially expressed genes (DEGs) related to metabolite interconversion enzymes in PCa by gene expression microarray data, single-cell RNA sequencing, oncogenes, and tumor suppressor genes (TSGs) utilizing bioinformatics techniques. This kind of analysis has not been documented in prior studies.

Results: We then used a dataset acquired by the Cancer Genome Atlas (TCGA) to confirm our findings. Genes including CYP3A5, PDE8B, AOX1, BNIPL, FADS2, RRM2, ALDH3B2, and GSTM2 may be significant in the diagnosis and treatment of PCa.

Conclusion: Our objective was to provide new perspectives on the molecular properties and pathways of DEGs in PCa and to uncover potential biomarkers that play a crucial role in the genesis and progression of PCa.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Discover. Oncology
Discover. Oncology Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
2.40
自引率
9.10%
发文量
122
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信