{"title":"Estimating the treatment effects of multiple drug combinations on multiple outcomes in hypertension.","authors":"Ruoqi Liu, Lang Li, Ping Zhang","doi":"10.1016/j.xcrm.2025.101947","DOIUrl":null,"url":null,"abstract":"<p><p>Hypertension management is complex due to the need for multiple drug combinations and consideration of diverse outcomes. Traditional treatment effect estimation methods struggle to address this complexity, as they typically focus on binary treatments and binary outcomes. To overcome these challenges, we introduce a framework that accommodates multiple drug combinations and multiple outcomes (METO). METO uses multi-treatment encoding to handle drug combinations and sequences, distinguishing between effectiveness and safety outcomes by learning the outcome type during prediction. To mitigate confounding bias, METO employs an inverse probability weighting method for multiple treatments, assigning balance weights based on propensity scores. Evaluated on real-world data, METO achieves significant performance improvements over existing methods, with an average improvement of 6.4% in influence function-based precision of estimating heterogeneous effects. A case study demonstrates METO's ability to identify personalized antihypertensive treatments that optimize efficacy and minimize safety risks, highlighting its potential for improving hypertension treatment strategies.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"101947"},"PeriodicalIF":11.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.101947","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hypertension management is complex due to the need for multiple drug combinations and consideration of diverse outcomes. Traditional treatment effect estimation methods struggle to address this complexity, as they typically focus on binary treatments and binary outcomes. To overcome these challenges, we introduce a framework that accommodates multiple drug combinations and multiple outcomes (METO). METO uses multi-treatment encoding to handle drug combinations and sequences, distinguishing between effectiveness and safety outcomes by learning the outcome type during prediction. To mitigate confounding bias, METO employs an inverse probability weighting method for multiple treatments, assigning balance weights based on propensity scores. Evaluated on real-world data, METO achieves significant performance improvements over existing methods, with an average improvement of 6.4% in influence function-based precision of estimating heterogeneous effects. A case study demonstrates METO's ability to identify personalized antihypertensive treatments that optimize efficacy and minimize safety risks, highlighting its potential for improving hypertension treatment strategies.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.