Stretch regulation of β2-Adrenoceptor signalling in cardiomyocytes requires caveolae.

IF 10.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Jiarong Fu, Catherine Mansfield, Ivan Diakonov, Aleksandra Judina, Matthew Delahaye, Navneet Bhogal, Jose L Sanchez-Alonso, Timothy Kamp, Julia Gorelik
{"title":"Stretch regulation of β2-Adrenoceptor signalling in cardiomyocytes requires caveolae.","authors":"Jiarong Fu, Catherine Mansfield, Ivan Diakonov, Aleksandra Judina, Matthew Delahaye, Navneet Bhogal, Jose L Sanchez-Alonso, Timothy Kamp, Julia Gorelik","doi":"10.1093/cvr/cvae265","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Caveolin-3 is essential for the formation of caveolae in cardiomyocytes. Caveolar microdomains have been shown to regulate the distribution of signalling proteins such as beta-adrenoceptors (βAR) and may act as membrane reserves to protect the cell from damage during the mechanical stretch. Myocardial stretch occurs during haemodynamic overload and may be normal (e.g. exercise) or pathological (e.g. heart failure); therefore, it is important to understand the effect of stretch on signalling pathways associated with mechanosensitive structures, such as caveolae. In this study, we investigate the role of caveolae in regulating the effect of stretch on βAR-signalling.</p><p><strong>Methods and results: </strong>We used osmotic swelling of isolated rat ventricular cardiomyocytes as a method to stretch the cell membrane and investigate the effect of βAR stimulation on cyclic adenosine monophosphate (cAMP) activity and contractility. βAR response was measured using a Förster Resonance Energy Transfer reporter for the second messenger cAMP and using CytoCypher for the measurement of cell contractility. β1AR and β2AR blockers were used to selectively allow stimulation of β2AR and β1AR, respectively. We also investigated the effect of stretch on βAR response to isoprenaline stimulation in left ventricular trabeculae dissected from control and cardiac-specific caveolin-3 knock-out mice (Cav3KO). Stretching trabeculae produces increased baseline adenylyl cyclase activity and a higher level of cAMP and a greater β2AR-induced positive inotropy after stimulation of the β2AR but not β1AR, by isoprenaline. Similar findings were confirmed for isolated myocytes subjected to hypoosmotic conditions. In isolated cardiomyocytes, caveolae depletion using methyl-beta-cyclodextrin or Cav3KO abolished the increase in β2AR response induced by stretch.</p><p><strong>Conclusion: </strong>Our study reveals a stretch-regulation of the β2AR signalling pathway, which requires functional caveolae. This indicates caveolae are mechanosensitive membrane domains that undergo structural and functional changes in response to stretch, thus leading to mechanical regulation of caveolae-associated signalling pathways.</p>","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":" ","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cvr/cvae265","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: Caveolin-3 is essential for the formation of caveolae in cardiomyocytes. Caveolar microdomains have been shown to regulate the distribution of signalling proteins such as beta-adrenoceptors (βAR) and may act as membrane reserves to protect the cell from damage during the mechanical stretch. Myocardial stretch occurs during haemodynamic overload and may be normal (e.g. exercise) or pathological (e.g. heart failure); therefore, it is important to understand the effect of stretch on signalling pathways associated with mechanosensitive structures, such as caveolae. In this study, we investigate the role of caveolae in regulating the effect of stretch on βAR-signalling.

Methods and results: We used osmotic swelling of isolated rat ventricular cardiomyocytes as a method to stretch the cell membrane and investigate the effect of βAR stimulation on cyclic adenosine monophosphate (cAMP) activity and contractility. βAR response was measured using a Förster Resonance Energy Transfer reporter for the second messenger cAMP and using CytoCypher for the measurement of cell contractility. β1AR and β2AR blockers were used to selectively allow stimulation of β2AR and β1AR, respectively. We also investigated the effect of stretch on βAR response to isoprenaline stimulation in left ventricular trabeculae dissected from control and cardiac-specific caveolin-3 knock-out mice (Cav3KO). Stretching trabeculae produces increased baseline adenylyl cyclase activity and a higher level of cAMP and a greater β2AR-induced positive inotropy after stimulation of the β2AR but not β1AR, by isoprenaline. Similar findings were confirmed for isolated myocytes subjected to hypoosmotic conditions. In isolated cardiomyocytes, caveolae depletion using methyl-beta-cyclodextrin or Cav3KO abolished the increase in β2AR response induced by stretch.

Conclusion: Our study reveals a stretch-regulation of the β2AR signalling pathway, which requires functional caveolae. This indicates caveolae are mechanosensitive membrane domains that undergo structural and functional changes in response to stretch, thus leading to mechanical regulation of caveolae-associated signalling pathways.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cardiovascular Research
Cardiovascular Research 医学-心血管系统
CiteScore
21.50
自引率
3.70%
发文量
547
审稿时长
1 months
期刊介绍: Cardiovascular Research Journal Overview: International journal of the European Society of Cardiology Focuses on basic and translational research in cardiology and cardiovascular biology Aims to enhance insight into cardiovascular disease mechanisms and innovation prospects Submission Criteria: Welcomes papers covering molecular, sub-cellular, cellular, organ, and organism levels Accepts clinical proof-of-concept and translational studies Manuscripts expected to provide significant contribution to cardiovascular biology and diseases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信