Styvalizh Uribe, Eyar Shany, Yi Zhang, Amy D Wu, William Dan, Jose F Perez-Zoghbi, Charles W Emala, Peter D Yim
{"title":"β-ionone facilitates <i>ex vivo</i> airway smooth muscle relaxation via extraocular Opsin-3 light receptor activation.","authors":"Styvalizh Uribe, Eyar Shany, Yi Zhang, Amy D Wu, William Dan, Jose F Perez-Zoghbi, Charles W Emala, Peter D Yim","doi":"10.1152/ajplung.00227.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies have linked deficiencies in β-carotene ingestion and its metabolites with an increased risk and severity of asthma exacerbations. We demonstrate that β-ionone, a β-carotene metabolite, dose-dependently relaxes upper and lower airways <i>in vitro</i> using wire myography of tracheal rings and phase-contrast microscopy of precision-cut lung slices (PCLSs). We demonstrate that β-ionone-induced relaxation is mediated through extraocular opsin-3 (OPN3) receptor activation via pharmacological competitive inhibition with chromophore 9-cis retinal, and through the decreased relaxation demonstrated in Opn3-null PCLSs. We implicate a mechanistic pathway suggestive of G<sub>ɑs</sub> activation that is in agreement with our previous findings. Lastly, we confirmed OPN3 expression in airway smooth muscle cells by immunofluorescence and mRNA expression. Our findings implicate β-ionone as a potential therapeutic agent for conditions characterized by bronchoconstriction, such as asthma and COPD. Moreover, this study underscores the significance of dietary intake, particularly of β-carotene rich foods, in maintaining respiratory health.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00227.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent studies have linked deficiencies in β-carotene ingestion and its metabolites with an increased risk and severity of asthma exacerbations. We demonstrate that β-ionone, a β-carotene metabolite, dose-dependently relaxes upper and lower airways in vitro using wire myography of tracheal rings and phase-contrast microscopy of precision-cut lung slices (PCLSs). We demonstrate that β-ionone-induced relaxation is mediated through extraocular opsin-3 (OPN3) receptor activation via pharmacological competitive inhibition with chromophore 9-cis retinal, and through the decreased relaxation demonstrated in Opn3-null PCLSs. We implicate a mechanistic pathway suggestive of Gɑs activation that is in agreement with our previous findings. Lastly, we confirmed OPN3 expression in airway smooth muscle cells by immunofluorescence and mRNA expression. Our findings implicate β-ionone as a potential therapeutic agent for conditions characterized by bronchoconstriction, such as asthma and COPD. Moreover, this study underscores the significance of dietary intake, particularly of β-carotene rich foods, in maintaining respiratory health.
期刊介绍:
The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.