Zecong Zeng, Bingjie Ran, Mangwei Cui, Fusheng Liu, Yan Huang
{"title":"The Rise of Zinc||Chalcogen Batteries with Conversion Mechanism","authors":"Zecong Zeng, Bingjie Ran, Mangwei Cui, Fusheng Liu, Yan Huang","doi":"10.1002/cnma.202400631","DOIUrl":null,"url":null,"abstract":"<p>Zinc||Chalcogen batteries (ZCBs) (S, Se, Te and interchalcogens) with conversion mechanism, involve complex chemical reactions and differ from conventional low-capacity aqueous zinc ion batteries (AZIBs) that rely on ion insertion and extraction for energy storage. Specifically, ZCBs combine the advantages of AZIBs and conversion reactions, exhibiting extremely high capacity, cost-effectiveness, safety, and environmental friendliness. These benefits make them one of the most promising candidates for next-generation large-scale application batteries. In this mini-review, we summarize the conversion mechanisms, existing challenges, and corresponding optimization strategies of ZCBs. Finally, we offer our perspectives on future advancements.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"11 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400631","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Zinc||Chalcogen batteries (ZCBs) (S, Se, Te and interchalcogens) with conversion mechanism, involve complex chemical reactions and differ from conventional low-capacity aqueous zinc ion batteries (AZIBs) that rely on ion insertion and extraction for energy storage. Specifically, ZCBs combine the advantages of AZIBs and conversion reactions, exhibiting extremely high capacity, cost-effectiveness, safety, and environmental friendliness. These benefits make them one of the most promising candidates for next-generation large-scale application batteries. In this mini-review, we summarize the conversion mechanisms, existing challenges, and corresponding optimization strategies of ZCBs. Finally, we offer our perspectives on future advancements.
ChemNanoMatEnergy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍:
ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.