Wavelet-Based Texture Mining and Enhancement for Face Forgery Detection

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xin Li, Hui Zhao, Bingxin Xu, Hongzhe Liu
{"title":"Wavelet-Based Texture Mining and Enhancement for Face Forgery Detection","authors":"Xin Li,&nbsp;Hui Zhao,&nbsp;Bingxin Xu,&nbsp;Hongzhe Liu","doi":"10.1049/bme2/2217175","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Due to the abuse of deep forgery technology, the research on forgery detection methods has become increasingly urgent. The corresponding relationship between the frequency spectrum information and the spatial clues, which is often neglected by current methods, could be conducive to a more accurate and generalized forgery detection. Motivated by this inspiration, we propose a wavelet-based texture mining and enhancement framework for face forgery detection. First, we introduce a frequency-guided texture enhancement (FGTE) module that mining the high-frequency information to improve the network’s extraction of effective texture features. Next, we propose a global–local feature refinement (GLFR) module to enhance the model’s leverage of both global semantic features and local texture features. Moreover, the interactive fusion module (IFM) is designed to fully incorporate the enhanced texture clues with spatial features. The proposed method has been extensively evaluated on five public datasets, such as FaceForensics++ (FF++), deepfake (DF) detection (DFD) challenge (DFDC), Celeb-DFv2, DFDC preview (DFDC-P), and DFD, for face forgery detection, yielding promising performance within and cross dataset experiments.</p>\n </div>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"2025 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bme2/2217175","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Biometrics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bme2/2217175","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the abuse of deep forgery technology, the research on forgery detection methods has become increasingly urgent. The corresponding relationship between the frequency spectrum information and the spatial clues, which is often neglected by current methods, could be conducive to a more accurate and generalized forgery detection. Motivated by this inspiration, we propose a wavelet-based texture mining and enhancement framework for face forgery detection. First, we introduce a frequency-guided texture enhancement (FGTE) module that mining the high-frequency information to improve the network’s extraction of effective texture features. Next, we propose a global–local feature refinement (GLFR) module to enhance the model’s leverage of both global semantic features and local texture features. Moreover, the interactive fusion module (IFM) is designed to fully incorporate the enhanced texture clues with spatial features. The proposed method has been extensively evaluated on five public datasets, such as FaceForensics++ (FF++), deepfake (DF) detection (DFD) challenge (DFDC), Celeb-DFv2, DFDC preview (DFDC-P), and DFD, for face forgery detection, yielding promising performance within and cross dataset experiments.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Biometrics
IET Biometrics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
0.00%
发文量
46
审稿时长
33 weeks
期刊介绍: The field of biometric recognition - automated recognition of individuals based on their behavioural and biological characteristics - has now reached a level of maturity where viable practical applications are both possible and increasingly available. The biometrics field is characterised especially by its interdisciplinarity since, while focused primarily around a strong technological base, effective system design and implementation often requires a broad range of skills encompassing, for example, human factors, data security and database technologies, psychological and physiological awareness, and so on. Also, the technology focus itself embraces diversity, since the engineering of effective biometric systems requires integration of image analysis, pattern recognition, sensor technology, database engineering, security design and many other strands of understanding. The scope of the journal is intentionally relatively wide. While focusing on core technological issues, it is recognised that these may be inherently diverse and in many cases may cross traditional disciplinary boundaries. The scope of the journal will therefore include any topics where it can be shown that a paper can increase our understanding of biometric systems, signal future developments and applications for biometrics, or promote greater practical uptake for relevant technologies: Development and enhancement of individual biometric modalities including the established and traditional modalities (e.g. face, fingerprint, iris, signature and handwriting recognition) and also newer or emerging modalities (gait, ear-shape, neurological patterns, etc.) Multibiometrics, theoretical and practical issues, implementation of practical systems, multiclassifier and multimodal approaches Soft biometrics and information fusion for identification, verification and trait prediction Human factors and the human-computer interface issues for biometric systems, exception handling strategies Template construction and template management, ageing factors and their impact on biometric systems Usability and user-oriented design, psychological and physiological principles and system integration Sensors and sensor technologies for biometric processing Database technologies to support biometric systems Implementation of biometric systems, security engineering implications, smartcard and associated technologies in implementation, implementation platforms, system design and performance evaluation Trust and privacy issues, security of biometric systems and supporting technological solutions, biometric template protection Biometric cryptosystems, security and biometrics-linked encryption Links with forensic processing and cross-disciplinary commonalities Core underpinning technologies (e.g. image analysis, pattern recognition, computer vision, signal processing, etc.), where the specific relevance to biometric processing can be demonstrated Applications and application-led considerations Position papers on technology or on the industrial context of biometric system development Adoption and promotion of standards in biometrics, improving technology acceptance, deployment and interoperability, avoiding cross-cultural and cross-sector restrictions Relevant ethical and social issues
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信