Response to high ambient temperatures in short-distance and trans-Saharan migratory species

IF 1.5 3区 生物学 Q1 ORNITHOLOGY
Julian Hasenbichler, Flora Bittermann, Gilbert Hafner, Thomas Zechmeister, Ivan Maggini
{"title":"Response to high ambient temperatures in short-distance and trans-Saharan migratory species","authors":"Julian Hasenbichler,&nbsp;Flora Bittermann,&nbsp;Gilbert Hafner,&nbsp;Thomas Zechmeister,&nbsp;Ivan Maggini","doi":"10.1111/jav.03375","DOIUrl":null,"url":null,"abstract":"<p>In consideration of current global climate change, ecophysiological research on wild birds has increased its emphasis on approaches related to thermal tolerance. Many studies have investigated how desert specialists are adapted physiologically to the hot and xeric conditions they live in. Our aim was to test whether migratory passerines from temperate areas also have physiological adaptations to cope with heat stress and whether such adaptations may be related to habitat or migration distance. Using video recording and flow-through respirometry, we measured temperatures of panting onset (<i>T</i><sub>PANT</sub>) of 113 individuals of 14 different species, exposed to increasing ambient temperature. Our study species differed in size, migration type (short-distance migrants vs. trans-Saharan migrants) and habitat preferences (woodland, farmland, reeds). We found that trans-Saharan migrants started panting at higher ambient temperatures (<i>T<sub>A</sub></i>) than short-distance migrants of similar size, but no difference between species from different habitats. This finding suggests that migrants facing a desert crossing may have adaptations to decrease the risk of dehydration while maintaining body temperature below the critical range. According to this, we suggest that there may be selection on traits related to the modulation of respiratory water loss in birds that cross the Sahara Desert during migration. Flexibility in these traits will be of crucial importance in a warmer future.</p>","PeriodicalId":15278,"journal":{"name":"Journal of Avian Biology","volume":"2025 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jav.03375","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Avian Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jav.03375","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORNITHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In consideration of current global climate change, ecophysiological research on wild birds has increased its emphasis on approaches related to thermal tolerance. Many studies have investigated how desert specialists are adapted physiologically to the hot and xeric conditions they live in. Our aim was to test whether migratory passerines from temperate areas also have physiological adaptations to cope with heat stress and whether such adaptations may be related to habitat or migration distance. Using video recording and flow-through respirometry, we measured temperatures of panting onset (TPANT) of 113 individuals of 14 different species, exposed to increasing ambient temperature. Our study species differed in size, migration type (short-distance migrants vs. trans-Saharan migrants) and habitat preferences (woodland, farmland, reeds). We found that trans-Saharan migrants started panting at higher ambient temperatures (TA) than short-distance migrants of similar size, but no difference between species from different habitats. This finding suggests that migrants facing a desert crossing may have adaptations to decrease the risk of dehydration while maintaining body temperature below the critical range. According to this, we suggest that there may be selection on traits related to the modulation of respiratory water loss in birds that cross the Sahara Desert during migration. Flexibility in these traits will be of crucial importance in a warmer future.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Avian Biology
Journal of Avian Biology 生物-鸟类学
CiteScore
3.70
自引率
0.00%
发文量
56
审稿时长
3 months
期刊介绍: Journal of Avian Biology publishes empirical and theoretical research in all areas of ornithology, with an emphasis on behavioural ecology, evolution and conservation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信