Cold atmospheric plasma treatment induces oxidative stress and alters microbial community profile in the leaves of sweet basil (Ocimum basilicum var. Kiera) plant

IF 3.2 2区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY
Andrea R. Gilbert-Eckman, Mairui Gao, Ryan A. Blaustein, Rohan V. Tikekar
{"title":"Cold atmospheric plasma treatment induces oxidative stress and alters microbial community profile in the leaves of sweet basil (Ocimum basilicum var. Kiera) plant","authors":"Andrea R. Gilbert-Eckman,&nbsp;Mairui Gao,&nbsp;Ryan A. Blaustein,&nbsp;Rohan V. Tikekar","doi":"10.1111/1750-3841.70066","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n \n <p>The oxidative species generated by cold atmospheric plasma (CAP) treatment can impact the plant stress response system. We hypothesized that this response is not limited to the site of CAP application and it is transmitted through the plant. The resulting stress response can influence the plant microbiome on the intact plant. These hypotheses were tested by the application of CAP to live sweet basil (<i>Ocimum basilicum</i> var. Kiera). A single upper leaf of the plant underwent a 60 s CAP treatment at three different wattage intensity levels. Reactive oxygen species (ROS) generation in directly treated leaves and leaves in the vicinity of the treatment site (i.e., one, two, or three nodes away) was measured using the fluorescein degradation assay (ex/em: 485/525). Leaves directly exposed to CAP showed a marked increase in ROS production. Interestingly, basil leaves not directly treated by CAP also showed a significant (<i>p</i> &lt; 0.05) increase in ROS generation compared to untreated control, extending to the two nearest nodes from the treatment site in all plants tested. The leaf microbiomes were evaluated using 16S rRNA gene sequencing. CAP appeared to drive restructuring of the leaf microbiota profiles, despite maintaining a similar α-diversity. CAP treatment intensity led to significant differences (<i>p</i> &lt; 0.05) in the relative abundances of a variety of dominant bacterial families (e.g., Psuedomonadaceae and Streptomycetaceae) and phyla, and the effects on certain taxa were dependent on leaf distance from the treatment site. CAP's ability to restructure plant microbiota may have applications to improve produce microbial safety and shelf-life.</p>\n </section>\n \n <section>\n \n <h3> Practical Application</h3>\n \n <p>Cold atmospheric plasma induces a stress response in a living plant beyond the site of application. This response includes an increase in the production of reactive oxygen species that can trigger pathways to enhance the production of phytochemicals. CAP treatment also alters the microbial community profile, possibly through plant stress response. Results from this study can be useful in developing CAP treatment of intact plant for improved growth, production of health-benefiting phytochemicals, and managing its microbiota.</p>\n </section>\n </div>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":"90 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1750-3841.70066","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1750-3841.70066","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The oxidative species generated by cold atmospheric plasma (CAP) treatment can impact the plant stress response system. We hypothesized that this response is not limited to the site of CAP application and it is transmitted through the plant. The resulting stress response can influence the plant microbiome on the intact plant. These hypotheses were tested by the application of CAP to live sweet basil (Ocimum basilicum var. Kiera). A single upper leaf of the plant underwent a 60 s CAP treatment at three different wattage intensity levels. Reactive oxygen species (ROS) generation in directly treated leaves and leaves in the vicinity of the treatment site (i.e., one, two, or three nodes away) was measured using the fluorescein degradation assay (ex/em: 485/525). Leaves directly exposed to CAP showed a marked increase in ROS production. Interestingly, basil leaves not directly treated by CAP also showed a significant (p < 0.05) increase in ROS generation compared to untreated control, extending to the two nearest nodes from the treatment site in all plants tested. The leaf microbiomes were evaluated using 16S rRNA gene sequencing. CAP appeared to drive restructuring of the leaf microbiota profiles, despite maintaining a similar α-diversity. CAP treatment intensity led to significant differences (p < 0.05) in the relative abundances of a variety of dominant bacterial families (e.g., Psuedomonadaceae and Streptomycetaceae) and phyla, and the effects on certain taxa were dependent on leaf distance from the treatment site. CAP's ability to restructure plant microbiota may have applications to improve produce microbial safety and shelf-life.

Practical Application

Cold atmospheric plasma induces a stress response in a living plant beyond the site of application. This response includes an increase in the production of reactive oxygen species that can trigger pathways to enhance the production of phytochemicals. CAP treatment also alters the microbial community profile, possibly through plant stress response. Results from this study can be useful in developing CAP treatment of intact plant for improved growth, production of health-benefiting phytochemicals, and managing its microbiota.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Food Science
Journal of Food Science 工程技术-食品科技
CiteScore
7.10
自引率
2.60%
发文量
412
审稿时长
3.1 months
期刊介绍: The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science. The range of topics covered in the journal include: -Concise Reviews and Hypotheses in Food Science -New Horizons in Food Research -Integrated Food Science -Food Chemistry -Food Engineering, Materials Science, and Nanotechnology -Food Microbiology and Safety -Sensory and Consumer Sciences -Health, Nutrition, and Food -Toxicology and Chemical Food Safety The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信