Suresh Jayakumar, P. Chinnappan Santhosh, K. V. Rishikesh, A. V. Radhamani
{"title":"Hydrothermally Synthesized Cobalt-Doped NiO Nanoflakes: Enhanced Electrochemical Performance for High-Performance Supercapacitors","authors":"Suresh Jayakumar, P. Chinnappan Santhosh, K. V. Rishikesh, A. V. Radhamani","doi":"10.1002/cnma.202400580","DOIUrl":null,"url":null,"abstract":"<p>This study examines cobalt-doped nickel oxide (Co-NiO) nanomaterials synthesized through a hydrothermal method, focusing on their potential as high-performance electrodes for supercapacitors. By varying cobalt dopant concentrations (X=0, 0.01, 0.05, 0.1), we aimed to enhance the electrochemical properties through strategic Co-doping. The Co<sub>x</sub>Ni<sub>1-x</sub>O nanomaterials were characterized using several techniques, including X-ray diffraction (XRD), UV-visible spectroscopy, field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), chronopotentiometry (CP), and electrochemical impedance spectroscopy (EIS). The analysis showed that Co-doping preserved the NiO phase structure while significantly altering the morphology and electrochemical characteristics. The sample with (X=0.1) achieved a specific capacitance of 880 F/g at a current density of 1 A/g, significantly outperforming the undoped NiO, which had a capacitance of 335 F/g. Additionally, the Co-NiO demonstrated 83.3 % capacitance retention after 1000 cycles at a current density of 10 A/g. These findings highlight the potential of Co-NiO as an effective electrode material for supercapacitors.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"11 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400580","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines cobalt-doped nickel oxide (Co-NiO) nanomaterials synthesized through a hydrothermal method, focusing on their potential as high-performance electrodes for supercapacitors. By varying cobalt dopant concentrations (X=0, 0.01, 0.05, 0.1), we aimed to enhance the electrochemical properties through strategic Co-doping. The CoxNi1-xO nanomaterials were characterized using several techniques, including X-ray diffraction (XRD), UV-visible spectroscopy, field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), chronopotentiometry (CP), and electrochemical impedance spectroscopy (EIS). The analysis showed that Co-doping preserved the NiO phase structure while significantly altering the morphology and electrochemical characteristics. The sample with (X=0.1) achieved a specific capacitance of 880 F/g at a current density of 1 A/g, significantly outperforming the undoped NiO, which had a capacitance of 335 F/g. Additionally, the Co-NiO demonstrated 83.3 % capacitance retention after 1000 cycles at a current density of 10 A/g. These findings highlight the potential of Co-NiO as an effective electrode material for supercapacitors.
本研究考察了通过水热法合成的钴掺杂氧化镍(Co-NiO)纳米材料,重点研究了它们作为超级电容器高性能电极的潜力。通过改变钴掺杂浓度(X=0, 0.01, 0.05, 0.1),我们旨在通过战略共掺杂来提高电化学性能。采用x射线衍射(XRD)、紫外可见光谱、场发射扫描电镜(FESEM)、x射线光电子能谱(XPS)、循环伏安法(CV)、时间电位法(CP)和电化学阻抗谱(EIS)等技术对CoxNi1-xO纳米材料进行了表征。分析表明,共掺杂在保留NiO相结构的同时,显著改变了材料的形貌和电化学特性。在电流密度为1 a /g时,(X=0.1)样品的比电容达到880 F/g,明显优于未掺杂的NiO样品的335 F/g。此外,在10 a /g电流密度下,在1000次循环后,Co-NiO的电容保持率为83.3%。这些发现突出了Co-NiO作为超级电容器有效电极材料的潜力。
ChemNanoMatEnergy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍:
ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.