{"title":"MMCAF: A Survival Status Prediction Method Based on Cross-Attention Fusion of Multimodal Colorectal Cancer Data","authors":"Xueping Tan, Dinghui Wu, Hao Wang, Zihao Zhao, Yuxi Ge, Shudong Hu","doi":"10.1002/ima.70051","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The employment of artificial intelligence methods in computer-assisted diagnosis systems is critical for colorectal cancer survival analysis and prognosis. However, due to the low prediction accuracy of single-modal data research and the complexity of multimodal data fusion methods, the current study's effect on colorectal cancer is minimal. To address this issue, the authors offer a multimodal cross attention fusion (MMCAF) technique for predicting colorectal cancer survival status. First, feature engineering is used to create feature sets for every mode and to address the heterogeneity of multimodal data. Second, a three-mode fusion technique is used to allocate weight to single-mode and multimodal features via channels and cross-attention processes. Lastly, the cross-entropy loss function is minimized in order to estimate the classification survival. The experimental results reveal that the MMCAF approach predicts survival states with 97.73% accuracy and an area under the receiver operating characteristic curve (AUC) of 0.99. When compared to the best outcome of other fusion algorithms (feature concatenation), the prediction accuracy increases by about 6 percentage points, while the AUC increases by 7 percentage points. This finding thoroughly demonstrates MMCAF's efficacy in predicting colorectal cancer survival.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70051","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The employment of artificial intelligence methods in computer-assisted diagnosis systems is critical for colorectal cancer survival analysis and prognosis. However, due to the low prediction accuracy of single-modal data research and the complexity of multimodal data fusion methods, the current study's effect on colorectal cancer is minimal. To address this issue, the authors offer a multimodal cross attention fusion (MMCAF) technique for predicting colorectal cancer survival status. First, feature engineering is used to create feature sets for every mode and to address the heterogeneity of multimodal data. Second, a three-mode fusion technique is used to allocate weight to single-mode and multimodal features via channels and cross-attention processes. Lastly, the cross-entropy loss function is minimized in order to estimate the classification survival. The experimental results reveal that the MMCAF approach predicts survival states with 97.73% accuracy and an area under the receiver operating characteristic curve (AUC) of 0.99. When compared to the best outcome of other fusion algorithms (feature concatenation), the prediction accuracy increases by about 6 percentage points, while the AUC increases by 7 percentage points. This finding thoroughly demonstrates MMCAF's efficacy in predicting colorectal cancer survival.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.