MMCAF: A Survival Status Prediction Method Based on Cross-Attention Fusion of Multimodal Colorectal Cancer Data

IF 3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Xueping Tan, Dinghui Wu, Hao Wang, Zihao Zhao, Yuxi Ge, Shudong Hu
{"title":"MMCAF: A Survival Status Prediction Method Based on Cross-Attention Fusion of Multimodal Colorectal Cancer Data","authors":"Xueping Tan,&nbsp;Dinghui Wu,&nbsp;Hao Wang,&nbsp;Zihao Zhao,&nbsp;Yuxi Ge,&nbsp;Shudong Hu","doi":"10.1002/ima.70051","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The employment of artificial intelligence methods in computer-assisted diagnosis systems is critical for colorectal cancer survival analysis and prognosis. However, due to the low prediction accuracy of single-modal data research and the complexity of multimodal data fusion methods, the current study's effect on colorectal cancer is minimal. To address this issue, the authors offer a multimodal cross attention fusion (MMCAF) technique for predicting colorectal cancer survival status. First, feature engineering is used to create feature sets for every mode and to address the heterogeneity of multimodal data. Second, a three-mode fusion technique is used to allocate weight to single-mode and multimodal features via channels and cross-attention processes. Lastly, the cross-entropy loss function is minimized in order to estimate the classification survival. The experimental results reveal that the MMCAF approach predicts survival states with 97.73% accuracy and an area under the receiver operating characteristic curve (AUC) of 0.99. When compared to the best outcome of other fusion algorithms (feature concatenation), the prediction accuracy increases by about 6 percentage points, while the AUC increases by 7 percentage points. This finding thoroughly demonstrates MMCAF's efficacy in predicting colorectal cancer survival.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70051","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The employment of artificial intelligence methods in computer-assisted diagnosis systems is critical for colorectal cancer survival analysis and prognosis. However, due to the low prediction accuracy of single-modal data research and the complexity of multimodal data fusion methods, the current study's effect on colorectal cancer is minimal. To address this issue, the authors offer a multimodal cross attention fusion (MMCAF) technique for predicting colorectal cancer survival status. First, feature engineering is used to create feature sets for every mode and to address the heterogeneity of multimodal data. Second, a three-mode fusion technique is used to allocate weight to single-mode and multimodal features via channels and cross-attention processes. Lastly, the cross-entropy loss function is minimized in order to estimate the classification survival. The experimental results reveal that the MMCAF approach predicts survival states with 97.73% accuracy and an area under the receiver operating characteristic curve (AUC) of 0.99. When compared to the best outcome of other fusion algorithms (feature concatenation), the prediction accuracy increases by about 6 percentage points, while the AUC increases by 7 percentage points. This finding thoroughly demonstrates MMCAF's efficacy in predicting colorectal cancer survival.

MMCAF:一种基于多模式结直肠癌数据交叉关注融合的生存状态预测方法
在计算机辅助诊断系统中采用人工智能方法对结直肠癌的生存分析和预后至关重要。然而,由于单模态数据研究的预测精度较低,以及多模态数据融合方法的复杂性,目前的研究对结直肠癌的影响很小。为了解决这个问题,作者提出了一种多模态交叉注意融合(MMCAF)技术来预测结直肠癌的生存状态。首先,特征工程用于为每种模式创建特征集,并解决多模式数据的异构性问题。其次,采用三模融合技术,通过通道和交叉注意过程将权重分配给单模态和多模态特征。最后,最小化交叉熵损失函数以估计分类存活率。实验结果表明,MMCAF方法预测存活状态的准确率为97.73%,受者工作特征曲线下面积(AUC)为0.99。与其他融合算法的最佳结果(特征拼接)相比,预测精度提高了约6个百分点,AUC提高了7个百分点。这一发现充分证明了MMCAF在预测结直肠癌生存方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Imaging Systems and Technology
International Journal of Imaging Systems and Technology 工程技术-成像科学与照相技术
CiteScore
6.90
自引率
6.10%
发文量
138
审稿时长
3 months
期刊介绍: The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals. IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging. The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered. The scope of the journal includes, but is not limited to, the following in the context of biomedical research: Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.; Neuromodulation and brain stimulation techniques such as TMS and tDCS; Software and hardware for imaging, especially related to human and animal health; Image segmentation in normal and clinical populations; Pattern analysis and classification using machine learning techniques; Computational modeling and analysis; Brain connectivity and connectomics; Systems-level characterization of brain function; Neural networks and neurorobotics; Computer vision, based on human/animal physiology; Brain-computer interface (BCI) technology; Big data, databasing and data mining.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信