{"title":"Bifunctional Zr-MgAl Layered Double Hydroxide Catalyst for Sustainable Transfer Hydrogenation of Ethyl Levulinate to γ-Valerolactone","authors":"Sahil Kumar, Priyanka Choudhary, Devendra Sharma, Venkata Krishnan","doi":"10.1002/cnma.202400564","DOIUrl":null,"url":null,"abstract":"<p>A highly versatile and efficient Zr-MgAl layered double hydroxide (LDH) catalyst has been developed via coprecipitation technique for the transfer hydrogenation of levulinic acid/ester to high-value γ-valerolactone (GVL). Detailed state of the art characterizations of the as-synthesized catalysts involving the structural, compositional, morphological, and surface area analysis were carried out to determine the relation between the physicochemical features and the catalytic activity. The proposed reaction protocol has been optimized by altering various reaction parameters, such as catalyst amount, temperature, time, and different hydrogen sources to obtain the maximum yield of GVL. In addition, kinetic studies were performed to gain deep insights into the role of Zr in catalytic activity, reaction kinetics, and the activation energy of the thermocatalytic process. The synthesis of GVL from renewable biomass resources promotes circular economy and carbon neutrality, paving the way for future research towards the sustainable production of green solvents.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"11 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400564","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A highly versatile and efficient Zr-MgAl layered double hydroxide (LDH) catalyst has been developed via coprecipitation technique for the transfer hydrogenation of levulinic acid/ester to high-value γ-valerolactone (GVL). Detailed state of the art characterizations of the as-synthesized catalysts involving the structural, compositional, morphological, and surface area analysis were carried out to determine the relation between the physicochemical features and the catalytic activity. The proposed reaction protocol has been optimized by altering various reaction parameters, such as catalyst amount, temperature, time, and different hydrogen sources to obtain the maximum yield of GVL. In addition, kinetic studies were performed to gain deep insights into the role of Zr in catalytic activity, reaction kinetics, and the activation energy of the thermocatalytic process. The synthesis of GVL from renewable biomass resources promotes circular economy and carbon neutrality, paving the way for future research towards the sustainable production of green solvents.
ChemNanoMatEnergy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍:
ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.