Projective representations of real semisimple Lie groups and the gradient map

IF 0.6 3区 数学 Q3 MATHEMATICS
Leonardo Biliotti
{"title":"Projective representations of real semisimple Lie groups and the gradient map","authors":"Leonardo Biliotti","doi":"10.1007/s10455-025-09986-z","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> be a real noncompact semisimple connected Lie group and let <span>\\(\\rho : G \\longrightarrow \\text {SL}(V)\\)</span> be a faithful irreducible representation on a finite-dimensional vector space <i>V</i> over <span>\\(\\mathbb {R}\\)</span>. We suppose that there exists a scalar product <span>\\(\\texttt {g}\\)</span> on <i>V</i> such that <span>\\(\\rho (G)=K\\exp ({\\mathfrak {p}})\\)</span>, where <span>\\(K=\\text {SO}(V,\\texttt {g})\\cap \\rho (G)\\)</span> and <span>\\({\\mathfrak {p}}=\\text {Sym}_o (V,\\texttt {g})\\cap (\\text {d} \\rho )_e ({\\mathfrak {g}})\\)</span>. Here, <span>\\({\\mathfrak {g}}\\)</span> denotes the Lie algebra of <i>G</i>, <span>\\(\\text {SO}(V,\\texttt {g})\\)</span> denotes the connected component of the orthogonal group containing the identity element and <span>\\(\\text {Sym}_o (V,\\texttt {g})\\)</span> denotes the set of symmetric endomorphisms of <i>V</i> with trace zero. In this paper, we study the projective representation of <i>G</i> on <span>\\({\\mathbb {P}}(V)\\)</span> arising from <span>\\(\\rho \\)</span>. There is a corresponding <i>G</i>-gradient map <span>\\(\\mu _{\\mathfrak {p}}:{\\mathbb {P}}(V) \\longrightarrow {\\mathfrak {p}}\\)</span>. Using <i>G</i>-gradient map techniques, we prove that the unique compact <i>G</i> orbit <span>\\({\\mathcal {O}}\\)</span> inside the unique compact <span>\\(U^\\mathbb {C}\\)</span> orbit <span>\\({\\mathcal {O}}'\\)</span> in <span>\\({\\mathbb {P}} (V^\\mathbb {C})\\)</span>, where <i>U</i> is the semisimple connected compact Lie group with Lie algebra <span>\\({\\mathfrak {k}} \\oplus {\\textbf {i}} {\\mathfrak {p}}\\subseteq \\mathfrak {sl}(V^\\mathbb {C})\\)</span>, is the set of fixed points of an anti-holomorphic involutive isometry of <span>\\({\\mathcal {O}}'\\)</span> and so a totally geodesic Lagrangian submanifold of <span>\\({\\mathcal {O}}'\\)</span>. Moreover, <span>\\({\\mathcal {O}}\\)</span> is contained in <span>\\({\\mathbb {P}}(V)\\)</span>. The restriction of the function <span>\\(\\mu _{\\mathfrak {p}}^\\beta (x):=\\langle \\mu _{\\mathfrak {p}}(x),\\beta \\rangle \\)</span>, where <span>\\(\\langle \\cdot , \\cdot \\rangle \\)</span> is an <span>\\(\\text {Ad}(K)\\)</span>-invariant scalar product on <span>\\({\\mathfrak {p}}\\)</span>, to <span>\\({\\mathcal {O}}\\)</span> achieves the maximum on the unique compact orbit of a suitable parabolic subgroup and this orbit is connected. We also describe the irreducible representations of parabolic subgroups of <i>G</i> in terms of the facial structure of the convex body given by the convex envelope of the image <span>\\(\\mu _{\\mathfrak {p}}({\\mathbb {P}}(V))\\)</span>.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"67 2","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-025-09986-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-025-09986-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a real noncompact semisimple connected Lie group and let \(\rho : G \longrightarrow \text {SL}(V)\) be a faithful irreducible representation on a finite-dimensional vector space V over \(\mathbb {R}\). We suppose that there exists a scalar product \(\texttt {g}\) on V such that \(\rho (G)=K\exp ({\mathfrak {p}})\), where \(K=\text {SO}(V,\texttt {g})\cap \rho (G)\) and \({\mathfrak {p}}=\text {Sym}_o (V,\texttt {g})\cap (\text {d} \rho )_e ({\mathfrak {g}})\). Here, \({\mathfrak {g}}\) denotes the Lie algebra of G, \(\text {SO}(V,\texttt {g})\) denotes the connected component of the orthogonal group containing the identity element and \(\text {Sym}_o (V,\texttt {g})\) denotes the set of symmetric endomorphisms of V with trace zero. In this paper, we study the projective representation of G on \({\mathbb {P}}(V)\) arising from \(\rho \). There is a corresponding G-gradient map \(\mu _{\mathfrak {p}}:{\mathbb {P}}(V) \longrightarrow {\mathfrak {p}}\). Using G-gradient map techniques, we prove that the unique compact G orbit \({\mathcal {O}}\) inside the unique compact \(U^\mathbb {C}\) orbit \({\mathcal {O}}'\) in \({\mathbb {P}} (V^\mathbb {C})\), where U is the semisimple connected compact Lie group with Lie algebra \({\mathfrak {k}} \oplus {\textbf {i}} {\mathfrak {p}}\subseteq \mathfrak {sl}(V^\mathbb {C})\), is the set of fixed points of an anti-holomorphic involutive isometry of \({\mathcal {O}}'\) and so a totally geodesic Lagrangian submanifold of \({\mathcal {O}}'\). Moreover, \({\mathcal {O}}\) is contained in \({\mathbb {P}}(V)\). The restriction of the function \(\mu _{\mathfrak {p}}^\beta (x):=\langle \mu _{\mathfrak {p}}(x),\beta \rangle \), where \(\langle \cdot , \cdot \rangle \) is an \(\text {Ad}(K)\)-invariant scalar product on \({\mathfrak {p}}\), to \({\mathcal {O}}\) achieves the maximum on the unique compact orbit of a suitable parabolic subgroup and this orbit is connected. We also describe the irreducible representations of parabolic subgroups of G in terms of the facial structure of the convex body given by the convex envelope of the image \(\mu _{\mathfrak {p}}({\mathbb {P}}(V))\).

实数半单李群的射影表示与梯度映射
设G是一个实非紧半单连通李群 \(\rho : G \longrightarrow \text {SL}(V)\) 是有限维向量空间V上的忠实不可约表示 \(\mathbb {R}\)。我们假设存在一个标量积 \(\texttt {g}\) 在V上 \(\rho (G)=K\exp ({\mathfrak {p}})\),其中 \(K=\text {SO}(V,\texttt {g})\cap \rho (G)\) 和 \({\mathfrak {p}}=\text {Sym}_o (V,\texttt {g})\cap (\text {d} \rho )_e ({\mathfrak {g}})\)。这里, \({\mathfrak {g}}\) 表示G的李代数, \(\text {SO}(V,\texttt {g})\) 表示含有单位元和的正交群的连通分量 \(\text {Sym}_o (V,\texttt {g})\) 表示迹为0的V的对称自同态集合。本文研究了G on的投影表示 \({\mathbb {P}}(V)\) 产生于 \(\rho \)。有一个对应的g梯度图 \(\mu _{\mathfrak {p}}:{\mathbb {P}}(V) \longrightarrow {\mathfrak {p}}\)。利用G梯度映射技术,证明了唯一紧G轨道 \({\mathcal {O}}\) 独特的紧凑型内部 \(U^\mathbb {C}\) 轨道 \({\mathcal {O}}'\) 在 \({\mathbb {P}} (V^\mathbb {C})\),其中U是具有李代数的半单连通紧李群 \({\mathfrak {k}} \oplus {\textbf {i}} {\mathfrak {p}}\subseteq \mathfrak {sl}(V^\mathbb {C})\)的反全纯对合等距的不动点集合 \({\mathcal {O}}'\) 所以是的全测地线拉格朗日子流形 \({\mathcal {O}}'\)。而且, \({\mathcal {O}}\) 包含在 \({\mathbb {P}}(V)\)。函数的限制 \(\mu _{\mathfrak {p}}^\beta (x):=\langle \mu _{\mathfrak {p}}(x),\beta \rangle \),其中 \(\langle \cdot , \cdot \rangle \) 是吗? \(\text {Ad}(K)\)-不变标量积 \({\mathfrak {p}}\), to \({\mathcal {O}}\) 在一个合适的抛物子群的唯一紧化轨道上达到最大值,并且这个轨道是连通的。我们还用图像的凸包络所给出的凸体的面结构描述了G的抛物子群的不可约表示 \(\mu _{\mathfrak {p}}({\mathbb {P}}(V))\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信