SpoofCeleb: Speech Deepfake Detection and SASV in the Wild

IF 2.9 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jee-weon Jung;Yihan Wu;Xin Wang;Ji-Hoon Kim;Soumi Maiti;Yuta Matsunaga;Hye-jin Shim;Jinchuan Tian;Nicholas Evans;Joon Son Chung;Wangyou Zhang;Seyun Um;Shinnosuke Takamichi;Shinji Watanabe
{"title":"SpoofCeleb: Speech Deepfake Detection and SASV in the Wild","authors":"Jee-weon Jung;Yihan Wu;Xin Wang;Ji-Hoon Kim;Soumi Maiti;Yuta Matsunaga;Hye-jin Shim;Jinchuan Tian;Nicholas Evans;Joon Son Chung;Wangyou Zhang;Seyun Um;Shinnosuke Takamichi;Shinji Watanabe","doi":"10.1109/OJSP.2025.3529377","DOIUrl":null,"url":null,"abstract":"This paper introduces SpoofCeleb, a dataset designed for Speech Deepfake Detection (SDD) and Spoofing-robust Automatic Speaker Verification (SASV), utilizing source data from real-world conditions and spoofing attacks generated by Text-To-Speech (TTS) systems also trained on the same real-world data. Robust recognition systems require speech data recorded in varied acoustic environments with different levels of noise to be trained. However, current datasets typically include clean, high-quality recordings (bona fide data) due to the requirements for TTS training; studio-quality or well-recorded read speech is typically necessary to train TTS models. Current SDD datasets also have limited usefulness for training SASV models due to insufficient speaker diversity. SpoofCeleb leverages a fully automated pipeline we developed that processes the VoxCeleb1 dataset, transforming it into a suitable form for TTS training. We subsequently train 23 contemporary TTS systems. SpoofCeleb comprises over 2.5 million utterances from 1,251 unique speakers, collected under natural, real-world conditions. The dataset includes carefully partitioned training, validation, and evaluation sets with well-controlled experimental protocols. We present the baseline results for both SDD and SASV tasks. All data, protocols, and baselines are publicly available at <uri>https://jungjee.github.io/spoofceleb</uri>.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"6 ","pages":"68-77"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10839331","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10839331/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces SpoofCeleb, a dataset designed for Speech Deepfake Detection (SDD) and Spoofing-robust Automatic Speaker Verification (SASV), utilizing source data from real-world conditions and spoofing attacks generated by Text-To-Speech (TTS) systems also trained on the same real-world data. Robust recognition systems require speech data recorded in varied acoustic environments with different levels of noise to be trained. However, current datasets typically include clean, high-quality recordings (bona fide data) due to the requirements for TTS training; studio-quality or well-recorded read speech is typically necessary to train TTS models. Current SDD datasets also have limited usefulness for training SASV models due to insufficient speaker diversity. SpoofCeleb leverages a fully automated pipeline we developed that processes the VoxCeleb1 dataset, transforming it into a suitable form for TTS training. We subsequently train 23 contemporary TTS systems. SpoofCeleb comprises over 2.5 million utterances from 1,251 unique speakers, collected under natural, real-world conditions. The dataset includes carefully partitioned training, validation, and evaluation sets with well-controlled experimental protocols. We present the baseline results for both SDD and SASV tasks. All data, protocols, and baselines are publicly available at https://jungjee.github.io/spoofceleb.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信