Skein and cluster algebras of unpunctured surfaces for sp4

IF 1.5 1区 数学 Q1 MATHEMATICS
Tsukasa Ishibashi , Wataru Yuasa
{"title":"Skein and cluster algebras of unpunctured surfaces for sp4","authors":"Tsukasa Ishibashi ,&nbsp;Wataru Yuasa","doi":"10.1016/j.aim.2025.110149","DOIUrl":null,"url":null,"abstract":"<div><div>As a sequel to our previous work <span><span>[18]</span></span> on the <span><math><msub><mrow><mi>sl</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-case, we introduce a skein algebra <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><msub><mrow><mi>sp</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><mi>Σ</mi></mrow><mrow><mi>q</mi></mrow></msubsup></math></span> consisting of <span><math><msub><mrow><mi>sp</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-webs on a marked surface Σ, incorporating certain “clasped” skein relations at special points. We further investigate its cluster structure. We also define a natural <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-form <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><msub><mrow><mi>sp</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><mi>Σ</mi></mrow><mrow><msub><mrow><mi>Z</mi></mrow><mrow><mi>q</mi></mrow></msub></mrow></msubsup><mo>⊂</mo><msubsup><mrow><mi>S</mi></mrow><mrow><msub><mrow><mi>sp</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><mi>Σ</mi></mrow><mrow><mi>q</mi></mrow></msubsup></math></span>, while the natural coefficient ring <span><math><mi>R</mi></math></span> of <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><msub><mrow><mi>sp</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><mi>Σ</mi></mrow><mrow><mi>q</mi></mrow></msubsup></math></span> includes the inverse of the quantum integer <span><math><msub><mrow><mo>[</mo><mn>2</mn><mo>]</mo></mrow><mrow><mi>q</mi></mrow></msub></math></span>. We prove that its boundary-localization <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><msub><mrow><mi>sp</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><mi>Σ</mi></mrow><mrow><msub><mrow><mi>Z</mi></mrow><mrow><mi>q</mi></mrow></msub></mrow></msubsup><mo>[</mo><msup><mrow><mo>∂</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>]</mo></math></span> embeds into a quantum cluster algebra <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><msub><mrow><mi>sp</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><mi>Σ</mi></mrow><mrow><mi>q</mi></mrow></msubsup></math></span> that quantizes the function ring of the moduli space <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>S</mi><msub><mrow><mi>p</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><mi>Σ</mi></mrow><mrow><mo>×</mo></mrow></msubsup></math></span>. Furthermore, we establish the positivity of Laurent expressions of elevation-preserving webs, following an approach similar to <span><span>[18]</span></span>. We also propose a characterization of cluster variables in the spirit of Fomin–Pylyavskyy <span><span>[9]</span></span> using <span><math><msub><mrow><mi>sp</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-webs, and provide infinitely many supporting examples on a quadrilateral.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"465 ","pages":"Article 110149"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825000477","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

As a sequel to our previous work [18] on the sl3-case, we introduce a skein algebra Ssp4,Σq consisting of sp4-webs on a marked surface Σ, incorporating certain “clasped” skein relations at special points. We further investigate its cluster structure. We also define a natural Zq-form Ssp4,ΣZqSsp4,Σq, while the natural coefficient ring R of Ssp4,Σq includes the inverse of the quantum integer [2]q. We prove that its boundary-localization Ssp4,ΣZq[1] embeds into a quantum cluster algebra Asp4,Σq that quantizes the function ring of the moduli space ASp4,Σ×. Furthermore, we establish the positivity of Laurent expressions of elevation-preserving webs, following an approach similar to [18]. We also propose a characterization of cluster variables in the spirit of Fomin–Pylyavskyy [9] using sp4-webs, and provide infinitely many supporting examples on a quadrilateral.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信