Quantitative analysis of the proteome and protein oxidative modifications in primary human coronary artery endothelial cells and associated extracellular matrix
Shuqi Xu , Christine Y. Chuang , Clare L. Hawkins , Per Hägglund , Michael J. Davies
{"title":"Quantitative analysis of the proteome and protein oxidative modifications in primary human coronary artery endothelial cells and associated extracellular matrix","authors":"Shuqi Xu , Christine Y. Chuang , Clare L. Hawkins , Per Hägglund , Michael J. Davies","doi":"10.1016/j.redox.2025.103524","DOIUrl":null,"url":null,"abstract":"<div><div>Vascular endothelial cells (ECs) play a key role in physiology by controlling arterial contraction and relaxation, and molecular transport. EC dysfunction is associated with multiple pathologies. Here, we characterize the cellular and extracellular matrix (ECM) proteomes of primary human coronary artery ECs, from multiple donors, and oxidation/nitration products formed on these during cell culture, using liquid chromatography-mass spectrometry. In total ∼9900 proteins were identified in cells from 3 donors, with ∼7000 proteins per donor. Of these ∼5300 were consistently identified, indicating some heterogeneity across the donors, with age a possible cause. Multiple endogenous oxidation products were detected on both ECM and cellular proteins (and particularly endoplasmic reticulum species). In contrast, nitration was mostly detected on cell proteins and particularly cytoskeletal proteins, consistent with intracellular generation of nitrating agents, possibly from endothelial nitric oxide synthase (eNOS) or peroxidase enzymes. The modifications are ascribed to both physiological enzymatic activity (hydroxylation at proline/lysine; predominantly on ECM proteins and especially collagens) and the formation of reactive species (oxidation at tryptophan/tyrosine/histidine; nitration at tryptophan/tyrosine). The identified sites are present on a limited number of peptides (104 oxidized; 23 nitrated) from a modest number of proteins. A small number of proteins were detected with multiple modifications, consistent with these being selective and specific targets. Several nitrated peptides were consistently detected across all donors, and also in human smooth muscle cells suggesting that these are major targets in the vascular proteome. These data provide a ‘background’ proteome dataset for studies of endothelial dysfunction in disease.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"81 ","pages":"Article 103524"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231725000370","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Vascular endothelial cells (ECs) play a key role in physiology by controlling arterial contraction and relaxation, and molecular transport. EC dysfunction is associated with multiple pathologies. Here, we characterize the cellular and extracellular matrix (ECM) proteomes of primary human coronary artery ECs, from multiple donors, and oxidation/nitration products formed on these during cell culture, using liquid chromatography-mass spectrometry. In total ∼9900 proteins were identified in cells from 3 donors, with ∼7000 proteins per donor. Of these ∼5300 were consistently identified, indicating some heterogeneity across the donors, with age a possible cause. Multiple endogenous oxidation products were detected on both ECM and cellular proteins (and particularly endoplasmic reticulum species). In contrast, nitration was mostly detected on cell proteins and particularly cytoskeletal proteins, consistent with intracellular generation of nitrating agents, possibly from endothelial nitric oxide synthase (eNOS) or peroxidase enzymes. The modifications are ascribed to both physiological enzymatic activity (hydroxylation at proline/lysine; predominantly on ECM proteins and especially collagens) and the formation of reactive species (oxidation at tryptophan/tyrosine/histidine; nitration at tryptophan/tyrosine). The identified sites are present on a limited number of peptides (104 oxidized; 23 nitrated) from a modest number of proteins. A small number of proteins were detected with multiple modifications, consistent with these being selective and specific targets. Several nitrated peptides were consistently detected across all donors, and also in human smooth muscle cells suggesting that these are major targets in the vascular proteome. These data provide a ‘background’ proteome dataset for studies of endothelial dysfunction in disease.
期刊介绍:
Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease.
Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.